1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并
2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若,则的值为( )ABCD2等比数列若则( )A6B6C-6D3已知点(m,8)在幂函数的图象上,设,则( )AbacBabcCbcaDacb4函数在上为增函数,则的值可以是( )A0BCD5已知集合,则( )ABCD6已知,则下列不等式正确的是( )ABCD7山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外.据统计,烟台苹果(把苹果近似看成球体)的直径(单位:)服从正态分布,则直径在内的概率为( )附:若,则,.A0.6826B0.8413C0.8185D0.954
3、48设 ,则()A10B11C12D139已知随机变量的分布列是则( )ABCD10若函数f(x)x3x2在区间(a,a5)上存在最小值,则实数a的取值范围是A5,0)B(5,0)C3,0)D(3,0)11复数()ABC0D12九章算术是我国古代数学名著,书中有如下问题:“今有勾六步,股八步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为6步和8步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,满足约束条件,则的最小值为_.14已知正方形边长为,空间中的动点满足,则三棱锥体
4、积的最大值是_.15设双曲线的一条渐近线方程为,则该双曲线的离心率为_.16已知正方体棱长为2,点是上底面内一动点,若三棱锥的外接球表面积恰为,则此时点构成的图形面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(1)当时,求的单调区间(2)设直线是曲线的切线,若的斜率存在最小值-2,求的值,并求取得最小斜率时切线的方程(3)已知分别在,处取得极值,求证:18(12分)在直角坐标系中,曲线的参数方程为(为参数,将曲线经过伸缩变换后得到曲线.在以原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)说明曲线是哪一种曲线,并将曲线的方程化为极
5、坐标方程;(2)已知点是曲线上的任意一点,又直线上有两点和,且,又点的极角为,点的极角为锐角.求:点的极角;面积的取值范围.19(12分)已知函数f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)对任意,都有恒成立,求实数a的取值范围;(3)证明:对一切,都有成立20(12分)设点分别是椭圆的左,右焦点,为椭圆上任意一点,且的最小值为1(1)求椭圆的方程;(2)如图,直线与轴交于点,过点且斜率的直线与椭圆交于两点,为线段的中点,直线交直线于点,证明:直线21(12分)已知抛物线的准线过椭圆C:(ab0)的左焦点F,且点F到直线l:(c为椭圆焦距的一半)的距离为4.(1)求椭圆C的
6、标准方程;(2)过点F做直线与椭圆C交于A,B两点,P是AB的中点,线段AB的中垂线交直线l于点Q.若,求直线AB的方程.22(10分)已知椭圆:()的左、右焦点分别为和,右顶点为,且,短轴长为.(1)求椭圆的方程;(2)若过点作垂直轴的直线,点为直线上纵坐标不为零的任意一点,过作的垂线交椭圆于点和,当时,求此时四边形的面积.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】根据,再根据二项式的通项公式进行求解即可.【题目详解】因为,所以二项式的展开式的通项公式为:,令,所以,因此
7、有.故选:C【答案点睛】本题考查了二项式定理的应用,考查了二项式展开式通项公式的应用,考查了数学运算能力2、B【答案解析】根据等比中项性质代入可得解,由等比数列项的性质确定值即可.【题目详解】由等比数列中等比中项性质可知,所以,而由等比数列性质可知奇数项符号相同,所以,故选:B.【答案点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.3、B【答案解析】先利用幂函数的定义求出m的值,得到幂函数解析式为f(x)x3,在R上单调递增,再利用幂函数f(x)的单调性,即可得到a,b,c的大小关系.【题目详解】由幂函数的定义可知,m11,m2,点(2,8)在幂函数f(x)xn上,
8、2n8,n3,幂函数解析式为f(x)x3,在R上单调递增,1ln3,n3,abc,故选:B.【答案点睛】本题主要考查了幂函数的性质,以及利用函数的单调性比较函数值大小,属于中档题.4、D【答案解析】依次将选项中的代入,结合正弦、余弦函数的图象即可得到答案.【题目详解】当时,在上不单调,故A不正确;当时,在上单调递减,故B不正确;当时,在上不单调,故C不正确;当时,在上单调递增,故D正确.故选:D【答案点睛】本题考查正弦、余弦函数的单调性,涉及到诱导公式的应用,是一道容易题.5、C【答案解析】求出集合,计算出和,即可得出结论.【题目详解】,.故选:C.【答案点睛】本题考查交集和并集的计算,考查计
9、算能力,属于基础题.6、D【答案解析】利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项【题目详解】已知,赋值法讨论的情况:(1)当时,令,则,排除B、C选项;(2)当时,令,则,排除A选项.故选:D.【答案点睛】比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题7、C【答案解析】根据服从的正态分布可得,将所求概率转化为,结合正态分布曲线的性质可求得结果.【题目详解】由题意,则,所以,.故果实直径在内的概率为0.8185.故选:C【答案点睛】本题考查根据正态分布求解
10、待定区间的概率问题,考查了正态曲线的对称性,属于基础题.8、B【答案解析】根据题中给出的分段函数,只要将问题转化为求x10内的函数值,代入即可求出其值【题目详解】f(x),f(5)ff(1)f(9)ff(15)f(13)1故选:B【答案点睛】本题主要考查了分段函数中求函数的值,属于基础题9、C【答案解析】利用分布列求出,求出期望,再利用期望的性质可求得结果.【题目详解】由分布列的性质可得,得,所以,因此,.故选:C.【答案点睛】本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查10、C【答案解析】求函数导数,分析函数单调性得到函数的简图,得到a满足的不等式组,从而得解.【题目详解】
11、由题意,f(x)x22xx(x2),故f(x)在(,2),(0,)上是增函数,在(2,0)上是减函数,作出其图象如图所示令x3x2,得x0或x3,则结合图象可知,解得a3,0),故选C.【答案点睛】本题主要考查了利用函数导数研究函数的单调性,进而研究函数的最值,属于常考题型.11、C【答案解析】略12、C【答案解析】利用直角三角形三边与内切圆半径的关系求出半径,再分别求出三角形和内切圆的面积,根据几何概型的概率计算公式,即可求解.【题目详解】由题意,直角三角形的斜边长为,利用等面积法,可得其内切圆的半径为,所以向次三角形内投掷豆子,则落在其内切圆内的概率为.故选:C.【答案点睛】本题主要考查了
12、面积比的几何概型的概率的计算问题,其中解答中熟练应用直角三角形的性质,求得其内切圆的半径是解答的关键,着重考查了推理与运算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】作出约束条件所表示的可行域,利用直线截距的几何意义,即可得答案.【题目详解】画出可行域易知在点处取最小值为.故答案为:【答案点睛】本题考查简单线性规划的最值,考查数形结合思想,考查运算求解能力,属于基础题.14、【答案解析】以为原点,为轴,为轴,过作平面的垂线为轴建立空间直角坐标系,设点,根据题中条件得出,进而可求出的最大值,由此能求出三棱锥体积的最大值.【题目详解】以为原点,为轴,为轴,过作平面的垂线
13、为轴建立空间直角坐标系,则,设点,空间中的动点满足,所以,整理得,当,时,取最大值,所以,三棱锥的体积为.因此,三棱锥体积的最大值为.故答案为:.【答案点睛】本题考查三棱锥体积的最大值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题15、【答案解析】根据渐近线得到,计算得到离心率.【题目详解】,一条渐近线方程为:,故,.故答案为:.【答案点睛】本题考查了双曲线的渐近线和离心率,意在考查学生的计算能力.16、.【答案解析】设三棱锥的外接球为球,分别取、的中点、,先确定球心在线段和中点的连线上,先求出球的半径的值,然后利用勾股定理求出的值,于是得出,再利用勾股定
14、理求出点在上底面轨迹圆的半径长,最后利用圆的面积公式可求出答案【题目详解】如图所示,设三棱锥的外接球为球,分别取、的中点、,则点在线段上,由于正方体的棱长为2,则的外接圆的半径为,设球的半径为,则,解得.所以,则而点在上底面所形成的轨迹是以为圆心的圆,由于,所以,因此,点所构成的图形的面积为.【答案点睛】本题考查三棱锥的外接球的相关问题,根据立体几何中的线段关系求动点的轨迹,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间为,;单调递减区间为;(2),;(3)证明见解析【答案解析】(1)由的正负可确定的单调区间;(2)利用基本不等式可求得时,取得最小值,由导数的几何意义可知,从而求得,求得切点坐