收藏 分享(赏)

2023届四川省三台县塔山中学高三3月份第一次模拟考试数学试卷(含解析).doc

上传人:sc****y 文档编号:13460 上传时间:2023-01-06 格式:DOC 页数:20 大小:1.97MB
下载 相关 举报
2023届四川省三台县塔山中学高三3月份第一次模拟考试数学试卷(含解析).doc_第1页
第1页 / 共20页
2023届四川省三台县塔山中学高三3月份第一次模拟考试数学试卷(含解析).doc_第2页
第2页 / 共20页
2023届四川省三台县塔山中学高三3月份第一次模拟考试数学试卷(含解析).doc_第3页
第3页 / 共20页
2023届四川省三台县塔山中学高三3月份第一次模拟考试数学试卷(含解析).doc_第4页
第4页 / 共20页
2023届四川省三台县塔山中学高三3月份第一次模拟考试数学试卷(含解析).doc_第5页
第5页 / 共20页
2023届四川省三台县塔山中学高三3月份第一次模拟考试数学试卷(含解析).doc_第6页
第6页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为( )ABCD2设,是空间两条不同的直线,是空间两个不同的平面,给出下列四个命题:若,则;若,则

2、;若,则;若,则.其中正确的是( )ABCD3若复数(是虚数单位),则复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限4已知三棱柱( )ABCD5定义在R上的函数,若在区间上为增函数,且存在,使得.则下列不等式不一定成立的是( )ABCD6设实数、满足约束条件,则的最小值为( )A2B24C16D147已知,是椭圆与双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,若,则的最小值为( )ABC8D68已知函数是定义在上的偶函数,当时,则,,的大小关系为( )ABCD9函数的大致图象是( )ABCD10设分别是双线的左、右焦点,为坐标原点,以为直

3、径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为( )ABCD11已知某几何体的三视图如图所示,则该几何体的体积是( )AB64CD3212设函数在定义城内可导,的图象如图所示,则导函数的图象可能为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知数列的前项和为,且成等差数列,数列的前项和为,则满足的最小正整数的值为_.14某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二 人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高三被抽取的人数为_15的展开式中,常数项为_;系数最大的项是_.16已知是等比数列

4、,且,则_,的最大值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在中,角、所对的边分别为、,角、的度数成等差数列,.(1)若,求的值;(2)求的最大值.18(12分)已知函数,.(1)若时,解不等式;(2)若关于的不等式在上有解,求实数的取值范围.19(12分)设椭圆:的右焦点为,右顶点为,已知椭圆离心率为,过点且与轴垂直的直线被椭圆截得的线段长为3.()求椭圆的方程;()设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线斜率的取值范围.20(12分)在直角坐标系中,直线l过点,且倾斜角为,以直角坐标系的原点O为极点,x轴

5、的正半轴为极轴建立极坐标系,曲线C的极坐标方程为求直线l的参数方程和曲线C的直角坐标方程,并判断曲线C是什么曲线;设直线l与曲线C相交与M,N两点,当,求的值21(12分)已知函数,其中(1)求函数的单调区间;若满足,且求证: (2)函数若对任意,都有,求的最大值22(10分)已知函数.(1)求不等式的解集;(2)若关于的不等式在上恒成立,求实数的取值范围.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】设,联立直线与抛物线方程,消去、列出韦达定理,再由直线与抛物线的交点求出点坐

6、标,最后根据,得到方程,即可求出参数的值;【题目详解】解:设,由,得,解得或,.又由,得,或,又,代入解得.故选:D【答案点睛】本题考查直线与抛物线的综合应用,弦长公式的应用,属于中档题.2、C【答案解析】根据线面平行或垂直的有关定理逐一判断即可.【题目详解】解:、也可能相交或异面,故错:因为,所以或,因为,所以,故对:或,故错:如图因为,在内过点作直线的垂线,则直线,又因为,设经过和相交的平面与交于直线,则又,所以因为, 所以,所以,故对.故选:C【答案点睛】考查线面平行或垂直的判断,基础题.3、A【答案解析】将 整理成的形式,得到复数所对应的的点,从而可选出所在象限.【题目详解】解:,所以

7、所对应的点为在第一象限.故选:A.【答案点睛】本题考查了复数的乘法运算,考查了复数对应的坐标.易错点是误把 当成进行计算.4、C【答案解析】因为直三棱柱中,AB3,AC4,AA112,ABAC,所以BC5,且BC为过底面ABC的截面圆的直径取BC中点D,则OD底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R13,即R5、D【答案解析】根据题意判断出函数的单调性,从而根据单调性对选项逐个判断即可【题目详解】由条件可得函数关于直线对称;在,上单调递增,且在时使得;又,所以选项成立;,比离对称轴远,可得,选项成立;,可知比离对称轴远,选项成立;,符号不定,无法比较

8、大小,不一定成立故选:【答案点睛】本题考查了函数的基本性质及其应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.6、D【答案解析】做出满足条件的可行域,根据图形即可求解.【题目详解】做出满足的可行域,如下图阴影部分,根据图象,当目标函数过点时,取得最小值,由,解得,即,所以的最小值为.故选:D.【答案点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.7、C【答案解析】由椭圆的定义以及双曲线的定义、离心率公式化简,结合基本不等式即可求解.【题目详解】设椭圆的长半轴长为,双曲线的半实轴长为,半焦距为,则,设由椭圆的定义以及双曲线的定义可得:,则 当且

9、仅当时,取等号.故选:C【答案点睛】本题主要考查了椭圆的定义以及双曲线的定义、离心率公式,属于中等题.8、C【答案解析】根据函数的奇偶性得,再比较的大小,根据函数的单调性可得选项.【题目详解】依题意得,当时,因为,所以在上单调递增,又在上单调递增,所以在上单调递增,即,故选:C.【答案点睛】本题考查函数的奇偶性的应用、幂、指、对的大小比较,以及根据函数的单调性比较大小,属于中档题.9、A【答案解析】用排除B,C;用排除;可得正确答案.【题目详解】解:当时,所以,故可排除B,C;当时,故可排除D故选:A【答案点睛】本题考查了函数图象,属基础题10、B【答案解析】由于四边形为菱形,且,所以为等边三

10、角形,从而可得渐近线的倾斜角,求出其斜率.【题目详解】如图,因为四边形为菱形,所以为等边三角形,两渐近线的斜率分别为和.故选:B【答案点睛】此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题.11、A【答案解析】根据三视图,还原空间几何体,即可得该几何体的体积.【题目详解】由该几何体的三视图,还原空间几何体如下图所示:可知该几何体是底面在左侧的四棱锥,其底面是边长为4的正方形,高为4,故.故选:A【答案点睛】本题考查了三视图的简单应用,由三视图还原空间几何体,棱锥体积的求法,属于基础题.12、D【答案解析】根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的

11、图象.【题目详解】由的图象可知,在上为增函数,且在上存在正数,使得在上为增函数,在为减函数,故在有两个不同的零点,且在这两个零点的附近,有变化,故排除A,B.由在上为增函数可得在上恒成立,故排除C.故选:D.【答案点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】本题先根据公式初步找到数列的通项公式,然后根据等差中项的性质可解得的值,即可确定数列的通项公式,代入数列的表达式计算出数列的通项公式,然后运用裂项相消法计算出前项和,再代入不等式进行计算可得最小正整数的值【题目详

12、解】由题意,当时,当时,则,成等差数列,即,解得,即,即,即满足的最小正整数的值为1故答案为:1【答案点睛】本题主要考查数列求通项公式、裂项相消法求前项和,考查了转化思想、方程思想,考查了不等式的计算、逻辑思维能力和数学运算能力14、【答案解析】由分层抽样的知识可得,即,所以高三被抽取的人数为,应填答案15、 【答案解析】求出二项展开式的通项,令指数为零,求出参数的值,代入可得出展开式中的常数项;求出项的系数,利用作商法可求出系数最大的项.【题目详解】的展开式的通项为,令,得,所以,展开式中的常数项为;令,令,即,解得,因此,展开式中系数最大的项为.故答案为:;.【答案点睛】本题考查二项展开式

13、中常数项的求解,同时也考查了系数最大项的求解,涉及展开式通项的应用,考查分析问题和解决问题的能力,属于中等题.16、5 【答案解析】 ,即的最大值为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1);(2)【答案解析】(1) 由角的度数成等差数列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2) 由正弦定理,得.由,得.所以当,即时,.【方法点睛】解三角形问题基本思想方法:从条件出发,利用正弦定理(或余弦定理)进行代换、转化逐步化为纯粹的边与边或角与角的关系,即考虑如下两条途径:统一成角进行判断,常用正弦定理及三角恒等变换;统一成边进行判断,常用余弦定理、面积公式等18、(1)(2)【答案解析】(1)零点分段法,分,讨论即可;(2)当时,原问题可转化为:存在,使不等式成立,即.【题目详解】解:(1)若时,当时,原不等式可化为,解得,所以,当时,原不等式可化为,解得,所以,当时,原不等式可化为,解得,所以,综上述:不等式的解集为;(2)当时,由得,即,故得,又由题意知:,即,故的范围为.【答案点睛】本题考查解绝对值不等式以及不等式能成

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2