收藏 分享(赏)

2023届吉林省长春外国语学校高三下学期第一次联考数学试卷(含解析).doc

上传人:g****t 文档编号:13471 上传时间:2023-01-06 格式:DOC 页数:21 大小:2.35MB
下载 相关 举报
2023届吉林省长春外国语学校高三下学期第一次联考数学试卷(含解析).doc_第1页
第1页 / 共21页
2023届吉林省长春外国语学校高三下学期第一次联考数学试卷(含解析).doc_第2页
第2页 / 共21页
2023届吉林省长春外国语学校高三下学期第一次联考数学试卷(含解析).doc_第3页
第3页 / 共21页
2023届吉林省长春外国语学校高三下学期第一次联考数学试卷(含解析).doc_第4页
第4页 / 共21页
2023届吉林省长春外国语学校高三下学期第一次联考数学试卷(含解析).doc_第5页
第5页 / 共21页
2023届吉林省长春外国语学校高三下学期第一次联考数学试卷(含解析).doc_第6页
第6页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知数列的前项和为,且,则的通项公式( )ABCD2设全集为R,集合,则ABCD3甲、乙、丙三人相约晚上在某地会面,已

2、知这三人都不会违约且无两人同时到达,则甲第一个到、丙第三个到的概率是( )ABCD4 “”是“,”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件5已知定义在上的函数在区间上单调递增,且的图象关于对称,若实数满足,则的取值范围是( )ABCD6关于函数,有下述三个结论:函数的一个周期为;函数在上单调递增;函数的值域为.其中所有正确结论的编号是( )ABCD7已知函数,则,的大小关系为( )ABCD8某四棱锥的三视图如图所示,该几何体的体积是( )A8BC4D9已知数列满足:)若正整数使得成立,则( )A16B17C18D1910双曲线的渐近线方程为( )ABCD11已知

3、函数是上的偶函数,是的奇函数,且,则的值为( )ABCD12已知数列中,(),则等于( )ABCD2二、填空题:本题共4小题,每小题5分,共20分。13如图,已知扇形的半径为1,面积为,则_.14在直角坐标系中,已知点和点,若点在的平分线上,且,则向量的坐标为_.15展开式的第5项的系数为_.16设函数,若存在实数m,使得关于x的方程有4个不相等的实根,且这4个根的平方和存在最小值,则实数a的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,(1)当时,求不等式的解集; (2)若函数的图象与轴恰好围成一个直角三角形,求的值18(12分)如图为某

4、大江的一段支流,岸线与近似满足,宽度为圆为江中的一个半径为的小岛,小镇位于岸线上,且满足岸线,现计划建造一条自小镇经小岛至对岸的水上通道(图中粗线部分折线段,在右侧),为保护小岛,段设计成与圆相切设 (1)试将通道的长表示成的函数,并指出定义域;(2)若建造通道的费用是每公里100万元,则建造此通道最少需要多少万元?19(12分)已知函数(1)若对任意恒成立,求实数的取值范围;(2)求证: 20(12分)已知函数.(1)求的单调区间;(2)讨论零点的个数.21(12分)如图所示,四棱柱中,底面为梯形,.(1)求证:;(2)若平面平面,求二面角的余弦值.22(10分)如图,平面四边形中,是上的一

5、点,是的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】利用证得数列为常数列,并由此求得的通项公式.【题目详解】由,得,可得().相减得,则(),又由,得,所以,所以为常数列,所以,故.故选:C【答案点睛】本小题考查数列的通项与前项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识.2、B【答案解析】分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得

6、:,结合交集的定义可得:.本题选择B选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.3、D【答案解析】先判断是一个古典概型,列举出甲、乙、丙三人相约到达的基本事件种数,再得到甲第一个到、丙第三个到的基本事件的种数,利用古典概型的概率公式求解.【题目详解】甲、乙、丙三人相约到达的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,其中甲第一个到、丙第三个到有甲乙丙,共1种,所以甲第一个到、丙第三个到的概率是. 故选:D【答案点睛】本题主要考查古典概型的概率求法,还考查了理解辨析的能力,属于基础题.4、B【答案解析】先求出满足的值,

7、然后根据充分必要条件的定义判断【题目详解】由得,即, ,因此“”是“,”的必要不充分条件故选:B【答案点睛】本题考查充分必要条件,掌握充分必要条件的定义是解题基础解题时可根据条件与结论中参数的取值范围进行判断5、C【答案解析】根据题意,由函数的图象变换分析可得函数为偶函数,又由函数在区间上单调递增,分析可得,解可得的取值范围,即可得答案.【题目详解】将函数的图象向左平移个单位长度可得函数的图象,由于函数的图象关于直线对称,则函数的图象关于轴对称,即函数为偶函数,由,得,函数在区间上单调递增,则,得,解得.因此,实数的取值范围是.故选:C.【答案点睛】本题考查利用函数的单调性与奇偶性解不等式,注

8、意分析函数的奇偶性,属于中等题.6、C【答案解析】用周期函数的定义验证.当时,再利用单调性判断.根据平移变换,函数的值域等价于函数的值域,而,当时,再求值域.【题目详解】因为,故错误;当时,所以,所以在上单调递增,故正确;函数的值域等价于函数的值域,易知,故当时,故正确.故选:C.【答案点睛】本题考查三角函数的性质,还考查推理论证能力以及分类讨论思想,属于中档题.7、B【答案解析】可判断函数在上单调递增,且,所以.【题目详解】在上单调递增,且,所以.故选:B【答案点睛】本题主要考查了函数单调性的判定,指数函数与对数函数的性质,利用单调性比大小等知识,考查了学生的运算求解能力.8、D【答案解析】

9、根据三视图知,该几何体是一条垂直于底面的侧棱为2的四棱锥,画出图形,结合图形求出底面积代入体积公式求它的体积【题目详解】根据三视图知,该几何体是侧棱底面的四棱锥,如图所示:结合图中数据知,该四棱锥底面为对角线为2的正方形,高为PA=2,四棱锥的体积为.故选:D.【答案点睛】本题考查由三视图求几何体体积,由三视图正确复原几何体是解题的关键,考查空间想象能力属于中等题.9、B【答案解析】计算,故,解得答案.【题目详解】当时,即,且.故,故.故选:.【答案点睛】本题考查了数列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用.10、C【答案解析】根据双曲线的标准方程,即可写出渐近线方程.

10、【题目详解】 双曲线,双曲线的渐近线方程为,故选:C【答案点睛】本题主要考查了双曲线的简单几何性质,属于容易题.11、B【答案解析】根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出.【题目详解】为上的奇函数,而函数是上的偶函数,故为周期函数,且周期为故选:B【答案点睛】本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.12、A【答案解析】分别代值计算可得,观察可得数列是以3为周期的周期数列,问题得以解决.【题目详解】解:,(),数列是以3为周期的周期数列,故选:A.【答案点睛】本题考查数列的周期性和运用:求数列中的项,考查运算能力,属于基础题.二

11、、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】根据题意,利用扇形面积公式求出圆心角,再根据等腰三角形性质求出,利用向量的数量积公式求出.【题目详解】设角, 则,所以在等腰三角形中,则.故答案为:.【答案点睛】本题考查扇形的面积公式和向量的数量积公式,属于基础题.14、【答案解析】点在的平分线可知与向量共线,利用线性运算求解即可.【题目详解】因为点在的平线上,所以存在使,而,可解得,所以,故答案为:【答案点睛】本题主要考查了向量的线性运算,利用向量的坐标求向量的模,属于中档题.15、70【答案解析】根据二项式定理的通项公式,可得结果.【题目详解】由题可知:第5项为故第5项的的系

12、数为故答案为:70.【答案点睛】本题考查的是二项式定理,属基础题。16、【答案解析】先确定关于x的方程当a为何值时有4个不相等的实根,再将这四个根的平方和表示出来,利用函数思想来判断当a为何值时这4个根的平方和存在最小值即可.【题目详解】由题意,当时,此时,此时函数在单调递减,在单调递增,方程最多2个不相等的实根,舍;当时,函数图象如下所示:从左到右方程,有4个不相等的实根,依次为,即,由图可知,故,且,从而,令,显然,要使该式在时有最小值,则对称轴,解得.综上所述,实数a的取值范围是.【答案点睛】本题考查了函数和方程的知识,但需要一定的逻辑思维能力,属于较难题.三、解答题:共70分。解答应写

13、出文字说明、证明过程或演算步骤。17、(1) (2)【答案解析】(1)当时,由可得,(所以,解得,所以不等式的解集为 (2)由题可得,因为函数的图象与轴恰好围成一个直角三角形,所以,解得,当时,函数的图象与轴没有交点,不符合题意;当时,函数的图象与轴恰好围成一个直角三角形,符合题意综上,可得18、(1),定义域是(2)百万【答案解析】(1)以为原点,直线为轴建立如图所示的直角坐标系,设,利用直线与圆相切得到,再代入这一关系中,即可得答案;(2)利用导数求函数的最小值,即可得答案;【题目详解】以为原点,直线为轴建立如图所示的直角坐标系 设,则,因为,所以直线的方程为,即,因为圆与相切,所以,即,从而得,在直线的方程中,令,得,所以,所以当时,设锐角满足,则,所以关于的函数是,定义域是(2)要使建造此通道费用最少,只要通道的长度即最小令,得,设锐角,满足,得列表:0减极小值增所以时,所以建造此通道的最少费用至少为百万元【答案点睛】本题考查三角函数模型的实际应用、利用导数求函数的最小值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.19、(1);(2)见解析.【答案解析】(1)将问题转化为对任意恒成立,换元构造新函数即可得解;(2)结合(1)可得,令,求导后证明其导函数单调递增

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2