收藏 分享(赏)

2023届四川省中江县龙台中学高三第二次诊断性检测数学试卷(含解析).doc

上传人:sc****y 文档编号:13490 上传时间:2023-01-06 格式:DOC 页数:22 大小:2.31MB
下载 相关 举报
2023届四川省中江县龙台中学高三第二次诊断性检测数学试卷(含解析).doc_第1页
第1页 / 共22页
2023届四川省中江县龙台中学高三第二次诊断性检测数学试卷(含解析).doc_第2页
第2页 / 共22页
2023届四川省中江县龙台中学高三第二次诊断性检测数学试卷(含解析).doc_第3页
第3页 / 共22页
2023届四川省中江县龙台中学高三第二次诊断性检测数学试卷(含解析).doc_第4页
第4页 / 共22页
2023届四川省中江县龙台中学高三第二次诊断性检测数学试卷(含解析).doc_第5页
第5页 / 共22页
2023届四川省中江县龙台中学高三第二次诊断性检测数学试卷(含解析).doc_第6页
第6页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数的导函数为,记,N. 若,则 ( )ABCD2已知的垂心为,且是的中点,则( )A14B1

2、2C10D83若复数满足(是虚数单位),则( )ABCD4易经包含着很多哲理,在信息学、天文学中都有广泛的应用,易经的博大精深,对今天 的几何学和其它学科仍有深刻的影响下图就是易经中记载的几何图形八卦田,图中正八 边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田已知正八边 形的边长为,阴阳太极图的半径为,则每块八卦田的面积约为( )ABCD5已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为( )ABCD6设集合,则 ()ABCD7已知定义在上的奇函数和偶函数满足(且),若,则函数的单调递增区间为( )ABCD8设向量,满足,则的取值范围是ABCD9等比数列若则

3、( )A6B6C-6D10如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A72B64C48D3211已知点,是函数的函数图像上的任意两点,且在点处的切线与直线AB平行,则( )A,b为任意非零实数B,a为任意非零实数Ca、b均为任意实数D不存在满足条件的实数a,b12设为定义在上的奇函数,当时,(为常数),则不等式的解集为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设,则_.14已知函数的图象在点处的切线方程是,则的值等于_.15已知三棱锥的四个顶点都在球O的球面上,E,F分别为,的中点,则球O的体积为_.1

4、6抛物线上到其焦点距离为5的点有_个三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数 , (1)求函数的单调区间;(2)当时,判断函数,()有几个零点,并证明你的结论;(3)设函数,若函数在为增函数,求实数的取值范围18(12分)已知函数,(1)当时,讨论函数的单调性;(2)若,当时,函数,求函数的最小值19(12分)已知椭圆:的两个焦点是,在椭圆上,且,为坐标原点,直线与直线平行,且与椭圆交于,两点.连接、与轴交于点,.(1)求椭圆的标准方程;(2)求证:为定值.20(12分)某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了个零件进行测

5、量,根据所测量的零件尺寸(单位:mm),得到如下的频率分布直方图:(1)根据频率分布直方图,求这个零件尺寸的中位数(结果精确到);(2)若从这个零件中尺寸位于之外的零件中随机抽取个,设表示尺寸在上的零件个数,求的分布列及数学期望;(3)已知尺寸在上的零件为一等品,否则为二等品,将这个零件尺寸的样本频率视为概率. 现对生产线上生产的零件进行成箱包装出售,每箱个. 企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为元. 若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付元的赔偿费用. 现对一箱零件随机抽检了个,结果

6、有个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.21(12分)已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.(1)求椭圆的方程;(2)已知定点,是否存在过的直线,使与椭圆交于,两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.22(10分)百年大计,教育为本.某校积极响应教育部号召,不断加大拔尖人才的培养力度,为清华、北大等排名前十的名校输送更多的人才.该校成立特长班进行专项培训.据统计有如下表格.(其中表示通过自主招生获得降分资格的学生人数,表示被清华、北大等名校录取的学生人数)年份

7、(届)2014201520162017201841495557638296108106123(1)通过画散点图发现与之间具有线性相关关系,求关于的线性回归方程;(保留两位有效数字)(2)若已知该校2019年通过自主招生获得降分资格的学生人数为61人,预测2019年高考该校考人名校的人数;(3)若从2014年和2018年考人名校的学生中采用分层抽样的方式抽取出5个人回校宣传,在选取的5个人中再选取2人进行演讲,求进行演讲的两人是2018年毕业的人数的分布列和期望.参考公式:,参考数据:,2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四

8、个选项中,只有一项是符合题目要求的。1、D【答案解析】通过计算,可得,最后计算可得结果.【题目详解】由题可知:所以所以猜想可知:由所以所以故选:D【答案点睛】本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题.2、A【答案解析】由垂心的性质,得到,可转化,又即得解.【题目详解】因为为的垂心,所以,所以,而, 所以,因为是的中点,所以故选:A【答案点睛】本题考查了利用向量的线性运算和向量的数量积的运算率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.3、B【答案解析】利用复数乘法运算化简,由此求得.【题目详解】依题意,所以.故选:

9、B【答案点睛】本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题.4、B【答案解析】由图利用三角形的面积公式可得正八边形中每个三角形的面积,再计算出圆面积的,两面积作差即可求解.【题目详解】由图,正八边形分割成个等腰三角形,顶角为,设三角形的腰为,由正弦定理可得,解得,所以三角形的面积为:,所以每块八卦田的面积约为:.故选:B【答案点睛】本题考查了正弦定理解三角形、三角形的面积公式,需熟记定理与面积公式,属于基础题.5、C【答案解析】求导,先求出在单增,在单减,且知设,则方程有4个不同的实数根等价于方程在上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得.【题目详解

10、】依题意,令,解得,故当时,当,且,故方程在上有两个不同的实数根,故,解得.故选:C.【答案点睛】本题考查确定函数零点或方程根个数.其方法:(1)构造法:构造函数(易求,可解),转化为确定的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出的图象草图,数形结合求解;(2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.6、B【答案解析】直接进行集合的并集、交集的运算即可【题目详解】解:; 故选:B【答案点睛】本题主要考查集合描述法、列举法的定义,以

11、及交集、并集的运算,是基础题.7、D【答案解析】根据函数的奇偶性用方程法求出的解析式,进而求出,再根据复合函数的单调性,即可求出结论.【题目详解】依题意有, , 得,又因为,所以,在上单调递增,所以函数的单调递增区间为.故选:D.【答案点睛】本题考查求函数的解析式、函数的性质,要熟记复合函数单调性判断方法,属于中档题.8、B【答案解析】由模长公式求解即可.【题目详解】,当时取等号,所以本题答案为B.【答案点睛】本题考查向量的数量积,考查模长公式,准确计算是关键,是基础题.9、B【答案解析】根据等比中项性质代入可得解,由等比数列项的性质确定值即可.【题目详解】由等比数列中等比中项性质可知,所以,

12、而由等比数列性质可知奇数项符号相同,所以,故选:B.【答案点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.10、B【答案解析】由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。【题目详解】由题意,几何体的三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,所以几何体的体积为,故选B。【答案点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见

13、轮廓线在三视图中为虚线。求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解。11、A【答案解析】求得的导函数,结合两点斜率公式和两直线平行的条件:斜率相等,化简可得,为任意非零实数.【题目详解】依题意,在点处的切线与直线AB平行,即有,所以,由于对任意上式都成立,可得,为非零实数.故选:A【答案点睛】本题考查导数的运用,求切线的斜率,考查两点的斜率公式,以及化简运算能力,属于中档题12、D【答案解析】由可得,所以,由为定义在上的奇函数结合增函数+增函数=增函数,可知在上单调递增,注意到,再利用函数单调性即可解决.【

14、题目详解】因为在上是奇函数.所以,解得,所以当时,且时,单调递增,所以在上单调递增,因为,故有,解得.故选:D.【答案点睛】本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13、121【答案解析】在所给的等式中令,,令,可得2个等式,再根据所得的2个等式即可解得所求.【题目详解】令,得,令,得,两式相加,得,所以.故答案为:.【答案点睛】本题主要考查二项式定理的应用,考查学生分析问题的能力,属于基础题,难度较易.14、【答案解析】利用导数的几何意义即可解决.【题目详解】由已知,故.故答案为:.【答案点睛】本题考查导数的几何意义,要注意在某点的切线与过某点的切线的区别,本题属于基础题.15、【答案解析】可证,则为的外心,又则平面即可求出,的值,再由勾股定理求出外接球的半径,最后根据体积公式计算可得.【题目详解】解:,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2