收藏 分享(赏)

2023届四川省泸县第五中学高三压轴卷数学试卷(含解析).doc

上传人:sc****y 文档编号:13513 上传时间:2023-01-06 格式:DOC 页数:23 大小:2.41MB
下载 相关 举报
2023届四川省泸县第五中学高三压轴卷数学试卷(含解析).doc_第1页
第1页 / 共23页
2023届四川省泸县第五中学高三压轴卷数学试卷(含解析).doc_第2页
第2页 / 共23页
2023届四川省泸县第五中学高三压轴卷数学试卷(含解析).doc_第3页
第3页 / 共23页
2023届四川省泸县第五中学高三压轴卷数学试卷(含解析).doc_第4页
第4页 / 共23页
2023届四川省泸县第五中学高三压轴卷数学试卷(含解析).doc_第5页
第5页 / 共23页
2023届四川省泸县第五中学高三压轴卷数学试卷(含解析).doc_第6页
第6页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求

2、的。1已知函数,若关于的方程有且只有一个实数根,则实数的取值范围是( )ABCD2已知抛物线上一点到焦点的距离为,分别为抛物线与圆上的动点,则的最小值为( )ABCD3若,则的值为( )ABCD4已知为圆的一条直径,点的坐标满足不等式组则的取值范围为( )ABCD5国务院发布关于进一步调整优化结构、提高教育经费使用效益的意见中提出,要优先落实教育投入某研究机构统计了年至年国家财政性教育经费投入情况及其在中的占比数据,并将其绘制成下表,由下表可知下列叙述错误的是( )A随着文化教育重视程度的不断提高,国在财政性教育经费的支出持续增长B年以来,国家财政性教育经费的支出占比例持续年保持在以上C从年至

3、年,中国的总值最少增加万亿D从年到年,国家财政性教育经费的支出增长最多的年份是年6在条件下,目标函数的最大值为40,则的最小值是( )ABCD27双曲线C:(,)的离心率是3,焦点到渐近线的距离为,则双曲线C的焦距为( )A3BC6D8已知双曲线的左、右顶点分别是,双曲线的右焦点为,点在过且垂直于轴的直线上,当的外接圆面积达到最小时,点恰好在双曲线上,则该双曲线的方程为( )ABCD9若向量,则( )A30B31C32D3310如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是( )ABCD811已知双曲线,点是直线上任意一点,若圆与双曲线的右支没有公共点,

4、则双曲线的离心率取值范围是( )ABCD12已知复数满足,则的共轭复数是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设等差数列的前项和为,若,则_,的最大值是_.14在棱长为的正方体中,是面对角线上两个不同的动点.以下四个命题:存在两点,使;存在两点,使与直线都成的角;若,则四面体的体积一定是定值;若,则四面体在该正方体六个面上的正投影的面积的和为定值.其中为真命题的是_.15圆心在曲线上的圆中,存在与直线相切且面积为的圆,则当取最大值时,该圆的标准方程为_.16已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为_三、解答题:共7

5、0分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在等腰梯形中,ADBC,分别为,的中点,以为折痕将折起,使点到达点位置(平面)(1)若为直线上任意一点,证明:MH平面;(2)若直线与直线所成角为,求二面角的余弦值18(12分)移动支付(支付宝及微信支付)已经渐渐成为人们购物消费的一种支付方式,为调查市民使用移动支付的年龄结构,随机对100位市民做问卷调查得到列联表如下:(1)将上列联表补充完整,并请说明在犯错误的概率不超过0.01的前提下,认为支付方式与年龄是否有关?(2)在使用移动支付的人群中采用分层抽样的方式抽取10人做进一步的问卷调查,从这10人随机中选出3人颁发参与奖

6、励,设年龄都低于35岁(含35岁)的人数为,求的分布列及期望.(参考公式:(其中)19(12分)在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:分数不少于120分分数不足120分合计线上学习时间不少于5小时419线上学习时间不足5小时合计45(1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线

7、上学习时间有关”;(2)按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是,求的分布列(概率用组合数算式表示);若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.(下面的临界值表供参考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(参考公式其中)20(12分)已知数列满足,其前n项和为.(1)通过计算,猜想并证明数列的通项公式;(2)

8、设数列满足,若数列是单调递减数列,求常数t的取值范围.21(12分)已知三点在抛物线上.()当点的坐标为时,若直线过点,求此时直线与直线的斜率之积;()当,且时,求面积的最小值.22(10分)如图,设点为椭圆的右焦点,圆过且斜率为的直线交圆于两点,交椭圆于点两点,已知当时,(1)求椭圆的方程.(2)当时,求的面积.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】利用换元法设,则等价为有且只有一个实数根,分 三种情况进行讨论,结合函数的图象,求出的取值范围.【题目详解】解:设 ,则

9、有且只有一个实数根.当 时,当 时, ,由即,解得,结合图象可知,此时当时,得 ,则 是唯一解,满足题意;当时,此时当时,此时函数有无数个零点,不符合题意;当 时,当 时,此时 最小值为 ,结合图象可知,要使得关于的方程有且只有一个实数根,此时 .综上所述: 或.故选:A.【答案点睛】本题考查了函数方程根的个数的应用.利用换元法,数形结合是解决本题的关键.2、D【答案解析】利用抛物线的定义,求得p的值,由利用两点间距离公式求得,根据二次函数的性质,求得,由取得最小值为,求得结果.【题目详解】由抛物线焦点在轴上,准线方程,则点到焦点的距离为,则,所以抛物线方程:,设,圆,圆心为,半径为1,则,当

10、时,取得最小值,最小值为,故选D.【答案点睛】该题考查的是有关距离的最小值问题,涉及到的知识点有抛物线的定义,点到圆上的点的距离的最小值为其到圆心的距离减半径,二次函数的最小值,属于中档题目.3、C【答案解析】根据,再根据二项式的通项公式进行求解即可.【题目详解】因为,所以二项式的展开式的通项公式为:,令,所以,因此有.故选:C【答案点睛】本题考查了二项式定理的应用,考查了二项式展开式通项公式的应用,考查了数学运算能力4、D【答案解析】首先将转化为,只需求出的取值范围即可,而表示可行域内的点与圆心距离,数形结合即可得到答案.【题目详解】作出可行域如图所示设圆心为,则,过作直线的垂线,垂足为B,

11、显然,又易得,所以,故.故选:D.【答案点睛】本题考查与线性规划相关的取值范围问题,涉及到向量的线性运算、数量积、点到直线的距离等知识,考查学生转化与划归的思想,是一道中档题.5、C【答案解析】观察图表,判断四个选项是否正确【题目详解】由表易知、项均正确,年中国为万亿元,年中国为万亿元,则从年至年,中国的总值大约增加万亿,故C项错误【答案点睛】本题考查统计图表,正确认识图表是解题基础6、B【答案解析】画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案.【题目详解】如图所示,画出可行域和目标函数,根据图像知:当时,有最大值为,即,故.当,即时等号成立.故选:.【答案点睛】本题考查

12、了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力.7、A【答案解析】根据焦点到渐近线的距离,可得,然后根据,可得结果.【题目详解】由题可知:双曲线的渐近线方程为取右焦点,一条渐近线则点到的距离为,由所以,则又所以所以焦距为:故选:A【答案点睛】本题考查双曲线渐近线方程,以及之间的关系,识记常用的结论:焦点到渐近线的距离为,属基础题.8、A【答案解析】点的坐标为,展开利用均值不等式得到最值,将点代入双曲线计算得到答案.【题目详解】不妨设点的坐标为,由于为定值,由正弦定理可知当取得最大值时,的外接圆面积取得最小值,也等价于取得最大值,因为,所以,当且仅当,即当时,等号成立,此时最

13、大,此时的外接圆面积取最小值,点的坐标为,代入可得,所以双曲线的方程为故选:【答案点睛】本题考查了求双曲线方程,意在考查学生的计算能力和应用能力.9、C【答案解析】先求出,再与相乘即可求出答案.【题目详解】因为,所以.故选:C.【答案点睛】本题考查了平面向量的坐标运算,考查了学生的计算能力,属于基础题.10、A【答案解析】由三视图还原出原几何体,得出几何体的结构特征,然后计算体积【题目详解】由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2,直观图如图所示,故选:A【答案点睛】本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键11、B【答案解析】先求出双曲线

14、的渐近线方程,可得则直线与直线的距离,根据圆与双曲线的右支没有公共点,可得,解得即可【题目详解】由题意,双曲线的一条渐近线方程为,即,是直线上任意一点,则直线与直线的距离,圆与双曲线的右支没有公共点,则,即,又故的取值范围为,故选:B【答案点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线的右支没有公共点得出是解答的关键,着重考查了推理与运算能力,属于基础题12、B【答案解析】根据复数的除法运算法则和共轭复数的定义直接求解即可.【题目详解】由,得,所以故选:B【答案点睛】本题考查了复数的除法的运算法则,考查了复数的共轭复数的定义,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、 【答案解析】利用等差数列前项和公式,列出方程组,求出首项和公差的值,利用等差数列的通项公式可求出数列的通项公式,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2