收藏 分享(赏)

四川省成都市金牛区外国语学校2023学年高三3月份模拟考试数学试题(含解析).doc

上传人:g****t 文档编号:14119 上传时间:2023-01-06 格式:DOC 页数:19 大小:1.76MB
下载 相关 举报
四川省成都市金牛区外国语学校2023学年高三3月份模拟考试数学试题(含解析).doc_第1页
第1页 / 共19页
四川省成都市金牛区外国语学校2023学年高三3月份模拟考试数学试题(含解析).doc_第2页
第2页 / 共19页
四川省成都市金牛区外国语学校2023学年高三3月份模拟考试数学试题(含解析).doc_第3页
第3页 / 共19页
四川省成都市金牛区外国语学校2023学年高三3月份模拟考试数学试题(含解析).doc_第4页
第4页 / 共19页
四川省成都市金牛区外国语学校2023学年高三3月份模拟考试数学试题(含解析).doc_第5页
第5页 / 共19页
四川省成都市金牛区外国语学校2023学年高三3月份模拟考试数学试题(含解析).doc_第6页
第6页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求

2、的。1等差数列中,已知,且,则数列的前项和中最小的是( )A或BCD2已知非零向量满足,若夹角的余弦值为,且,则实数的值为( )ABC或D3羽毛球混合双打比赛每队由一男一女两名运动员组成. 某班级从名男生,和名女生,中各随机选出两名,把选出的人随机分成两队进行羽毛球混合双打比赛,则和两人组成一队参加比赛的概率为( )ABCD4已知数列为等差数列,为其前 项和,则( )ABCD5已知,若对任意,关于x的不等式(e为自然对数的底数)至少有2个正整数解,则实数a的取值范围是( )ABCD6若复数(为虚数单位),则( )ABCD7由实数组成的等比数列an的前n项和为Sn,则“a10”是“S9S8”的(

3、 )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件8已知双曲线的左焦点为,直线经过点且与双曲线的一条渐近线垂直,直线与双曲线的左支交于不同的两点,若,则该双曲线的离心率为( )ABCD9甲在微信群中发了一个6元“拼手气”红包,被乙丙丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是( )ABCD10已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为( )ABCD11设为虚数单位,为复数,若为实数,则( )ABCD12某四棱锥的三视图如图所示,则该四棱锥的体积为( )ABCD二、填空题:本题共4小题,

4、每小题5分,共20分。13已知实数满足则的最大值为_.14将2个相同的红球和2个相同的黑球全部放入甲、乙、丙、丁四个盒子里,其中甲、乙盒子均最多可放入2个球,丙、丁盒子均最多可放入1个球,且不同颜色的球不能放入同一个盒子里,共有_种不同的放法.15若函数,则的值为_.16如图,半球内有一内接正四棱锥,该四棱锥的体积为,则该半球的体积为_. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,函数的最小值为.(1)求证:;(2)若恒成立,求实数的最大值.18(12分)表示,中的最大值,如,己知函数,.(1)设,求函数在上的零点个数;(2)试探讨是否存在实数,使得对恒

5、成立?若存在,求的取值范围;若不存在,说明理由.19(12分)某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案规定每日底薪100元,外卖业务每完成一单提成2元;方案规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为七组,整理得到如图所示的频率分布直方图.(1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率;(2)从以往统计数据看,新聘骑手选择日工资方案的概率为,选择方案的概率为.若甲、乙、丙、丁四名骑手分别到该快餐店

6、应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案的概率,(3)若仅从人日均收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)20(12分)已知函数.(1)若是函数的极值点,求的单调区间;(2)当时,证明:21(12分)在直角坐标系中,直线的参数方程为(为参数),直线的参数方程为,(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.()求的极坐标方程和的直角坐标方程;()设分别交于两点(与原点不重合),求的最小值.22(10分)在平面直角坐标系中,已知直线l的参数方程为(t为参数),在以坐标原点O为极点,

7、x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C相交于两点A,B,求线段的长.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】设公差为,则由题意可得,解得,可得.令,可得当时,当时,由此可得数列前项和中最小的.【题目详解】解:等差数列中,已知,且,设公差为,则,解得,.令,可得,故当时,当时,故数列前项和中最小的是.故选:C.【答案点睛】本题主要考查等差数列的性质,等差数列的通

8、项公式的应用,属于中档题.2、D【答案解析】根据向量垂直则数量积为零,结合以及夹角的余弦值,即可求得参数值.【题目详解】依题意,得,即.将代入可得,解得(舍去).故选:D.【答案点睛】本题考查向量数量积的应用,涉及由向量垂直求参数值,属基础题.3、B【答案解析】根据组合知识,计算出选出的人分成两队混合双打的总数为,然后计算和分在一组的数目为,最后简单计算,可得结果.【题目详解】由题可知:分别从3名男生、3名女生中选2人 :将选中2名女生平均分为两组:将选中2名男生平均分为两组:则选出的人分成两队混合双打的总数为:和分在一组的数目为所以所求的概率为故选:B【答案点睛】本题考查排列组合的综合应用,

9、对平均分组的问题要掌握公式,比如:平均分成组,则要除以,即,审清题意,细心计算,考验分析能力,属中档题.4、B【答案解析】利用等差数列的性质求出的值,然后利用等差数列求和公式以及等差中项的性质可求出的值.【题目详解】由等差数列的性质可得,.故选:B.【答案点睛】本题考查等差数列基本性质的应用,同时也考查了等差数列求和,考查计算能力,属于基础题.5、B【答案解析】构造函数(),求导可得在上单调递增,则 ,问题转化为,即至少有2个正整数解,构造函数,通过导数研究单调性,由可知,要使得至少有2个正整数解,只需即可,代入可求得结果.【题目详解】构造函数(),则(),所以在上单调递增,所以,故问题转化为

10、至少存在两个正整数x,使得成立,设,则,当时,单调递增;当时,单调递增.,整理得.故选:B.【答案点睛】本题考查导数在判断函数单调性中的应用,考查不等式成立问题中求解参数问题,考查学生分析问题的能力和逻辑推理能力,难度较难.6、B【答案解析】根据复数的除法法则计算,由共轭复数的概念写出.【题目详解】,故选:B【答案点睛】本题主要考查了复数的除法计算,共轭复数的概念,属于容易题.7、C【答案解析】根据等比数列的性质以及充分条件和必要条件的定义进行判断即可.【题目详解】解:若an是等比数列,则,若,则,即成立,若成立,则,即,故“”是“”的充要条件,故选:C.【答案点睛】本题主要考查充分条件和必要

11、条件的判断,利用等比数列的通项公式是解决本题的关键.8、A【答案解析】直线的方程为,令和双曲线方程联立,再由得到两交点坐标纵坐标关系进行求解即可.【题目详解】由题意可知直线的方程为,不妨设.则,且将代入双曲线方程中,得到设则由,可得,故则,解得则所以双曲线离心率故选:A【答案点睛】此题考查双曲线和直线相交问题,联立直线和双曲线方程得到两交点坐标关系和已知条件即可求解,属于一般性题目.9、B【答案解析】将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【题目详解】设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为,故选:

12、B.【答案点睛】本题主要考查了枚举法求古典概型的方法,属于基础题型.10、D【答案解析】因为的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式中奇数项的二项式系数和为考点:二项式系数,二项式系数和11、B【答案解析】可设,将化简,得到,由复数为实数,可得,解方程即可求解【题目详解】设,则.由题意有,所以.故选:B【答案点睛】本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题12、B【答案解析】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,由此求出四棱锥的体积【题目详解】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该

13、四棱锥的体积为.故选:B.【答案点睛】本题考查了利用三视图求几何体体积的问题,是基础题二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】直接利用柯西不等式得到答案.【题目详解】根据柯西不等式:,故,当,即,时等号成立.故答案为:.【答案点睛】本题考查了柯西不等式求最值,也可以利用均值不等式,三角换元求得答案.14、【答案解析】讨论装球盒子的个数,计算得到答案.【题目详解】当四个盒子有球时:种;当三个盒子有球时:种;当两个盒子有球时:种.故共有种,故答案为:.【答案点睛】本题考查了排列组合的综合应用,意在考查学生的理解能力和应用能力.15、【答案解析】根据题意,由函数的解析式求出

14、的值,进而计算可得答案【题目详解】根据题意,函数,则,则;故答案为:.【答案点睛】本题考查分段函数的性质、对数运算法则的应用,考查函数与方程思想、转化与化归思想,考查运算求解能力16、【答案解析】由题意可知半球的半径与正四棱锥的高相等,可得正四棱锥的棱与半径的关系,进而可写出半球的半径与四棱锥体积的关系,进而求得结果.【题目详解】设所给半球的半径为,则四棱锥的高,则,由四棱锥的体积,半球的体积为:.【方法点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)最大值为.【答案解析】(1)将函数表示为分段函数,利用函数的单调性求出

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 教辅习题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2