1、高效减水剂(又名超塑化剂)是一种重要的混凝土外加剂,是新型建筑材料支柱产业的重要产品之一。自上世纪80年代起,国外就开始着手研发聚羧酸系减水剂。它以石油化工产品为原料,以极高的减水率,极好的坍落度保持性和优异的增强效应,逐渐受到混凝土工程界的亲睐。聚羧酸减水剂研究的最终目标是通过不饱和单体在引发剂作用下共聚,将带活性基团的侧链接枝到聚合物的主链上,使其同时具有高效减水、控制坍落度损失和抗收 缩、不影响水泥的凝结硬化等作用。本文将概述国内外聚羧酸减水剂的研究和开展状况,探讨聚羧酸减水剂结构与性能之间的关系及其作用机理的研究成果,并分析 聚羧酸减水剂研究中存在和亟待解决的一些问题,希望对我国从事聚
2、羧酸系减水剂研究、应用的同行有所启发。1聚羧酸系减水剂的开展1.1国外情况 国外学者一开始通过所合成的反响性活性高分子作为混凝土坍落度损失控制剂,后来才真正意义上做到在分散水泥的作用机理上设计出各种最有效的分子结构,使外 加剂的减水分散效果、流动性保持效果得以大大提高。1986年日本专家首先研制成功聚羧酸系减水剂,90年代中期正式工业化生产,并开始在建筑施工中应 用。该类减水剂大体分为烯烃/顺丁烯二酸酐聚合物和丙烯酸/甲基丙烯酸脂聚合物等。据报道,1995年后聚羧酸系减水剂在日本的使用量就已超过了萘系减水 剂,且其品种、型号及品牌名目繁多。尤其是近年来大量高强度、高流动性混凝土的应用带动了聚羧
3、酸系减水剂的技术开展和应用水平。目前日本生产聚羧酸系减水 剂的厂家主要有花王、竹木油脂、NMB株式会社和藤泽药品等,每年利用此类减水剂生产的各类混凝土为1000万m3左右,并有逐年递增的开展趋势。与此同 时,其它国家对聚羧酸系减水剂的研究与应用也逐渐加强.虽然日本是研发应用聚羧酸系减水剂最早也是最为成功的国家,但目前北美和欧洲也十分重视对聚羧酸系 减水剂的研究。从最近的文献可知,聚羧酸系减水剂的研究已由第一代甲基丙烯酸/烯酸甲酯共聚物,到第二代丙烯基醚共聚物,又开展到第三代酰胺/酰亚胺型, 而且专家们正在着手研发第四代聚酰胺-聚乙烯乙二醇支链的新型高效减水剂。1.2国内情况 国内最早研制应用聚
4、羧酸系高性能减水剂的是上海市建筑科学研究院,其聚羧酸系减水剂LEX9已成功地应用于上海磁悬浮列车轨道梁工程、东海大桥和杭州湾大桥等工程。 由于国内近年来对聚羧酸系减水剂的研究有所重视,这方面的研究论文有所增加。清华大学土木工程系2023年起就开始进行聚羧酸系高性能减水剂合成方法的系 列试验研究;其他如华南理工大学、华东理工大学、大连理工大学、同济大学、复旦大学、山东建筑工程学院、南昌大学环境与化学工程学院、中国建筑材料科学研 究院、江苏省建筑科学研究院近年来也相继开展了聚羧酸系高性能减水剂结构、机理、制备、性能评价与应用的探索研究,取得一定成绩。在应用上,同济大学孙振平等人把聚羧酸减水剂应用在
5、钢管混凝土桥拱的施工中,其所用的倒灌顶升泵送施工是一种新方法。他们针对上海赵家沟主桥桥型特点和对 混凝土性能的要求,利用经特殊改性的聚羧酸系减水剂,配制了坍落度可保持8h不损失的补偿收缩自密实混凝土。采用这种高性能混凝土,防止了钢管拱内混凝土 的沉降和混凝土硬化体与管壁间的空隙,施工效果良好。 华南理工大学材料科学与工程学院比照研究了聚羧酸型高效减水剂和萘系高效减水剂配制的混凝土工作性能和强度性能。结果说明,聚羧酸型减水剂的减水率远高于 萘系减水剂,用聚羧酸型减水剂配制的混凝土坍落度损失较小,而且对混凝土强度无不良影响。在配制低水灰比混凝土时,宜选用聚羧酸型减水剂。 上海市建筑科学研究院研究了
6、聚羧酸高性能减水剂的性能及在混凝土中的应用。经实验证实,聚羧酸系高性能减水剂可以用来配制C30C80商品泵送混凝土、 80小时超缓凝商品泵送混凝土和具有高耐久性的海工混凝土。并且研究了掺有聚羧酸高性能混凝土减水剂的大掺量复合掺合材料混凝土和高强高性能混凝土的性 能,尤其反映了其收缩与徐变变化规律。 目前,江苏省建筑科学研究院、中国建筑科学研究院等单位均相继研制成功并投产聚羧酸系减水剂。为控制聚羧酸系减水剂的产品质量,由中国建筑科学研究院主持,众多单位参与制订的聚羧酸系高性能减水剂产品标准,也即将发布实施。2聚羧酸系减水剂的特性 聚羧酸系高性能减水剂是一种性能独特、无污染的新型高效减水剂,是配制
7、高性能混凝土理想的外加剂。聚羧酸系减水剂的分子通式如图1。图1 聚羧酸系减水剂分子结构示意图 与其它高效减水剂相比,聚羧酸系减水剂的分子结构主要有以下几个突出的特点: l)分子结构呈梳形,主链上带有较多的活性基团,并且极性较强。这些基团有磺酸基团(-SO3H),羧酸基团(-COOH),羟基基团(-OH),聚氧烷 基烯基团(-(CH2CH2O)m-R)等。各基团对水泥浆体的作用是不相同的,如磺酸基的分散性好;羧酸基除有较好的分散性外,还有缓凝效果;羟基不仅 具有缓凝作用,还能起到浸透润湿的作用;聚氧烷基类基团具有保持流动性的作用。 2)侧链带有亲水性的活性基团,并且链较长,其吸附形态主要为梳形柔
8、性吸附,可形成网状结构,具有较高的立体位阻效应,再加上羧基产生的静电排斥作用,可表现出较大的立体斥力效应。3)分子结构自由度相当大,外加剂合成时可控制的参数多,高性能化的潜力大。通过控制主链的聚合度、侧链(长度、类型)、官能团(种类、数量及位置)、分 子量大小及分布等参数可对其进行分子结构设计,研制生产出能更好地解决混凝土减水增强、引气、缓凝、保水等问题的外加剂产品。 由于上述独特的结构,聚羧酸系减水剂表现出一系列非常优异的性能,特别是掺量低,分散性高。其减水率高达30%以上,采用很小的掺量 (0.2%-0.5%)就可以赋予混凝土较高的流动性。总体来说,聚羧酸系减水剂与其它种类的高效减水剂相比
9、,在性能和生产方面具有以下优点: 1)掺量小,减水效果好。 2)坍落度保持性好。掺加一般的聚羧酸系减水剂,混凝土坍落度可保持两个小时甚至更长时间根本不损失; 3)对水泥凝结时间影响较小。以萘系、密胺系减水剂为主复配而成的泵送剂一般复合有缓凝剂,而采用聚羧酸系减水剂作为泵送剂一般不需要复配缓凝剂,便可直接使用。 4)与水泥的适应性较好。 5)增强效果潜力大。 6)低收缩,一定的引气量。 7)总碱含量低。 8)掺加聚羧酸系减水剂,可增加矿渣粉或粉煤灰代替水泥的百分比,从而提高混凝土绿色化水平。 9)聚羧酸系减水剂主链合成的原料来源较广,单体通常有丙烯酸、甲基丙烯酸、马来酸酐、(甲基)丙烯酸乙醋、乙
10、酸乙烯醋和烯丙基磺酸钠等; 10)聚羧酸系减水剂的分子结构自由度大,生产工艺方面可控制的参数多,高性能化的潜力大; 11)聚合途径多样化,如可利用共聚、接枝、嵌段等,其合成工艺相对较简单; 12)由于不使用甲醛,生产过程不会对环境造成污染。3聚羧酸系减水剂在应用过程中存在的问题 聚羧酸系减水剂最大的缺点为高引气,目前采用的后加消泡剂方法存在消泡剂分散不良的问题,会引起含气量的波动,最终会引起混凝土强度的波动。几乎每种聚羧 酸系减水剂都需要消泡剂来防止不必要的引气,而聚羧酸系减水剂和消泡剂相溶性太差,总能把消泡剂从水中别离出来飘浮在外表。另一个问题是难以延长凝结时 间,选择适宜的缓凝剂是当前必须
11、解决的问题。最后一个问题是其减缩效果不理想,混凝土的减缩剂的掺量在0.5%以上才能有效,减缩效果为10%20%左 右,而聚羧酸总有效掺量在0.3%0.5%左右,减缩效果不可能太大,理论值能到达5%10%就很不错了。4聚羧酸系减水剂的合成方法 聚羧酸系减水剂的合成主要是以丙烯酸(甲基丙烯酸)为主链接枝聚氧乙烯基EO或聚氧丙烯基PO支链,或以烯丙醇类为主链接枝EO或PO支链,也有以马来酸酐为主链接枝EO或PO支链的。目前合成聚羧酸系减水剂所选的单体主要有以下四种: 1)不饱和酸如马来酸酐、马来酸和丙烯酸、甲基丙烯酸等; 2)聚丙烯基物质聚丙烯基烃及其含不同官能团的衍生物等; 3)聚苯乙烯磺酸盐或酯
12、等; 4)甲基丙烯酸盐、酯或酰胺等。 具体采用的合成方法主要有以下三种。4.1先酯化后聚合 就是先将脂肪族羧酸单体,通常是丙烯酸或甲基丙烯酸单体,与聚乙二醇醚进行酯化反响,在聚醚上引入活性双键,缩合成分子量在200至3000之间的活性大单体,然后由该大单体与各种羧酸单体共聚而得。 清华大学的李崇智用过量的丙烯酸与不同分子量的聚乙二醇局部酯化,得到系列的聚乙二醇单丙烯酸酯,再与(甲基)丙烯酸及(甲基)丙烯磺酸钠共聚,所合成减 水剂的水泥净浆流动度1h根本无变化。华东理工大学包志军等的合成方法如下:第一步在四口烧瓶中依次按配比参加聚乙二醇单甲醚、对苯二酚、对甲苯磺酸和甲 基丙烯酸,加热搅拌,并升温
13、至110,反响5小时,得到大分子单体(MAMPEC);第二步同时滴加MAMPEG、丙烯酸和过硫酸铵水溶液经共聚反响后 得成品,该产品在0.8掺量时的减水率达25.1。国内的研究者大多采用此种方法8。此方法的优点是各官能团的摩尔比率可任意调节,分子设计多样性。但也有缺点,一是功能性大分子单体的合成难度大,未形成商品化生产,二是(甲基)丙烯酸 活性较大,极易发生聚合,所以在酯化反响时,必然要参加阻聚剂。此时,假设阻聚剂含量过小,那么聚合在第一步就会发生,使得一局部单体酯化不完全,产物分子 量、侧链都会相对减少,这必然会影响到流动性;假设阻聚剂量过大,在第一步中虽然能充分起到阻聚作用,但过量的阻聚会
14、影响之后的聚合,使得产物的转化率和分 子量都会降低,从而减小流动度。另外,该方法中间产物需经别离提纯后转入第二个反响釜进行共聚合反响,工艺比拟复杂,操作不方便,本钱较高,影响了该成果 转化为工业化生产。4.2 先聚合后酯化 第一步将一种或几种羧酸类单体在溶液中均聚或共聚成高聚物,分子量由几千至几万不等,第二步由该高聚物与单甲氧基聚乙二醇醚在催化剂作用下发生缩合反响,在高分子主链上引入聚醚侧链。同济大学的王国建等采用该途径,具体步骤如下:在带有搅拌器和冷凝管的三颈瓶中,参加配方量的丙烯酸、苯乙烯和丙烯酸丁酯,以醋酸乙酯为溶剂,偶氮二异丁 腈为引发剂,加热回流反响6小时,得到黄色共聚产物。在共聚产
15、物中参加一定量的端羟基聚氧乙烯基醚及适量催化剂进行酯化反响,反响过程中常压蒸馏出醋酸乙 酯和水的共沸物反响46小时,得到棕黄色接枝产物。在接枝产物中参加适量的醋酸乙酯,并在常温下滴加浓硫酸进行磺化反响,滴加结束后反响2小时,得到深 棕色磺化产物。再参加一定量的Na0H溶液快速搅拌直至磺化产物完全溶解,得到最终产品9。 该合成方法的优点是工艺简单,所有反响在一个反响釜中完成,且操作方便,本钱低。但也有很多问题,最大的难题是难于找到一种适宜的溶剂作为聚合反响的介 质。如以水为溶剂,那么难于保证所有单体都溶于水,另外水也是活性较大的链转移剂,而且由于缩合反响是一可逆平衡反响,反响本身要生成水,大量水的存在不利 于反响进行。采用有机溶剂尽管能解决上述问题,但同时也抹杀了该方法的最大优点本钱低,同时,对环境会造成不可防止的污染,也不符合可持续开展的要 求。4.3 原位聚合与接枝 为了克服聚合后功能化法的缺点,开发了此工艺. 此方法是在主链聚合的同时引入侧