收藏 分享(赏)

2023学年辽宁大连市高三3月份模拟考试数学试题(含解析).doc

上传人:la****1 文档编号:14857 上传时间:2023-01-06 格式:DOC 页数:20 大小:2.14MB
下载 相关 举报
2023学年辽宁大连市高三3月份模拟考试数学试题(含解析).doc_第1页
第1页 / 共20页
2023学年辽宁大连市高三3月份模拟考试数学试题(含解析).doc_第2页
第2页 / 共20页
2023学年辽宁大连市高三3月份模拟考试数学试题(含解析).doc_第3页
第3页 / 共20页
2023学年辽宁大连市高三3月份模拟考试数学试题(含解析).doc_第4页
第4页 / 共20页
2023学年辽宁大连市高三3月份模拟考试数学试题(含解析).doc_第5页
第5页 / 共20页
2023学年辽宁大连市高三3月份模拟考试数学试题(含解析).doc_第6页
第6页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知实数x,y满足约束条件,若的最大值为2,则实数k的值为( )A1BC2D2执行如图所示的程序框

2、图,则输出的( )A2B3CD3已知函数满足=1,则等于( )A-BC-D4函数在上单调递减的充要条件是( )ABCD5函数的图象大致是( )ABCD6已知复数z满足,则z的虚部为( )ABiC1D17执行如图所示的程序框图若输入,则输出的的值为( )ABCD8若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A函数在上单调递增B函数的周期是C函数的图象关于点对称D函数在上最大值是19一个正三角形的三个顶点都在双曲线的右支上,且其中一个顶点在双曲线的右顶点,则实数的取值范围是( )ABCD10若的展开式中含有常数项,且的最小值为,则( )ABCD11已知

3、数列是公差为的等差数列,且成等比数列,则( )A4B3C2D112在等差数列中,若为前项和,则的值是( )A156B124C136D180二、填空题:本题共4小题,每小题5分,共20分。13设全集,则_.14已知变量,满足约束条件,则的最小值为_15已知向量,满足,且已知向量,的夹角为,则的最小值是_16曲线在点(1,1)处的切线与轴及直线=所围成的三角形面积为,则实数=_。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出的普通方程和的直角坐标

4、方程;(2)设点在上,点在上,求的最小值以及此时的直角坐标.18(12分)已知,函数.()若在区间上单调递增,求的值;()若恒成立,求的最大值.(参考数据:)19(12分)如图,四棱锥中,侧面为等腰直角三角形,平面(1)求证:平面;(2)求直线与平面所成的角的正弦值20(12分)如图,在直三棱柱中,点分别为和的中点.()棱上是否存在点使得平面平面?若存在,写出的长并证明你的结论;若不存在,请说明理由.()求二面角的余弦值.21(12分)已知双曲线及直线.(1)若l与C有两个不同的交点,求实数k的取值范围;(2)若l与C交于A,B两点,O是原点,且,求实数k的值.22(10分)已知函数(1)若不

5、等式有解,求实数的取值范围;(2)函数的最小值为,若正实数,满足,证明:2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】画出约束条件的可行域,利用目标函数的几何意义,求出最优解,转化求解即可.【题目详解】可行域如图中阴影部分所示,要使得z能取到最大值,则,当时,x在点B处取得最大值,即,得;当时,z在点C处取得最大值,即,得(舍去).故选:B.【答案点睛】本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.2、B【答案解析】运行程序,依次进行循环,结

6、合判断框,可得输出值.【题目详解】起始阶段有,第一次循环后,第二次循环后,第三次循环后,第四次循环后,所有后面的循环具有周期性,周期为3,当时,再次循环输出的,,此时,循环结束,输出,故选:B【答案点睛】本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型.3、C【答案解析】设的最小正周期为,可得,则,再根据得,又,则可求出,进而可得.【题目详解】解:设的最小正周期为,因为,所以,所以,所以,又,所以当时,因为,整理得,因为,则所以.故选:C.【答案点睛】本题考查三角形函数的周期性和对称性,考查学生分析能力和计算能力,是一道难度较大的题目.4、C【答案解析】先求导函数,函数

7、在上单调递减则恒成立,对导函数不等式换元成二次函数,结合二次函数的性质和图象,列不等式组求解可得.【题目详解】依题意,令,则,故在上恒成立;结合图象可知,解得故.故选:C.【答案点睛】本题考查求三角函数单调区间. 求三角函数单调区间的两种方法:(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角(或),利用基本三角函数的单调性列不等式求解;(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.5、B【答案解析】根据函数表达式,把分母设为新函数,首先计算函数定义域,然后求导,根据导函数的正负判断函数单调性,对应函数图像得到答案.【题目详解】设,则的定义域为.,当,单增

8、,当,单减,则.则在上单增,上单减,.选B.【答案点睛】本题考查了函数图像的判断,用到了换元的思想,简化了运算,同学们还可以用特殊值法等方法进行判断.6、C【答案解析】利用复数的四则运算可得,即可得答案.【题目详解】,复数的虚部为.故选:C.【答案点睛】本题考查复数的四则运算、虚部概念,考查运算求解能力,属于基础题.7、C【答案解析】由程序语言依次计算,直到时输出即可【题目详解】程序的运行过程为当n=2时,时,此时输出.故选:C【答案点睛】本题考查由程序框图计算输出结果,属于基础题8、A【答案解析】根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,

9、错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.【题目详解】将横坐标缩短到原来的得:当时,在上单调递增 在上单调递增,正确;的最小正周期为: 不是的周期,错误;当时,关于点对称,错误;当时, 此时没有最大值,错误.本题正确选项:【答案点睛】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求函数的性质.9、D【答案解析】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,将

10、其代入双曲线可解得【题目详解】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,将其代入双曲线方程得:,即,由得故选:【答案点睛】本题考查了双曲线的性质,意在考查学生对这些知识的理解掌握水平10、C【答案解析】展开式的通项为,因为展开式中含有常数项,所以,即为整数,故n的最小值为1所以.故选C点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.11、A【答案解析】根据等差数列和等比数列公

11、式直接计算得到答案.【题目详解】由成等比数列得,即,已知,解得.故选:.【答案点睛】本题考查了等差数列,等比数列的基本量的计算,意在考查学生的计算能力.12、A【答案解析】因为,可得,根据等差数列前项和,即可求得答案.【题目详解】,.故选:A.【答案点睛】本题主要考查了求等差数列前项和,解题关键是掌握等差中项定义和等差数列前项和公式,考查了分析能力和计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】先求出集合,然后根据交集、补集的定义求解即可【题目详解】解:,或;故答案为:【答案点睛】本题主要考查集合的交集、补集运算,属于基础题14、-5【答案解析】画出,

12、满足的可行域,当目标函数经过点时,最小,求解即可。【题目详解】画出,满足的可行域,由解得,当目标函数经过点时,取得最小值为-5.【答案点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想。需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得。15、【答案解析】求的最小值可以转化为求以AB为直径的圆到点O的最小距离,由此即可得到本题答案.【题目详解】如图所示,设,由题,得,又,所以,则点C在以AB为直径的圆上,取AB的中点为M,则,设以AB为直径的圆与线段OM的交点为E,则的最小值是,因为,又,所以的最小值是.故答案为:【答案点睛】本题主要考查向量的综合应用问题,涉及到圆的相关知识与余弦定理,考查学生的分析问题和解决问题的能力,体现了数形结合的数学思想.16、或1【答案解析】利用导数的几何意义,可得切线的斜率,以及切线方程,求得切线与轴和的交点,由三角形的面积公式可得所求值【题目详解】的导数为,可得切线的斜率为3,切线方程为,可得,可得切线与轴的交点为,切线与的交点为,可得,解得或。【答案点睛】本题

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 教辅习题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2