1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,其中,记函数满足条件:为事件,则事件发生的概率为ABCD2若ab0,0c1,则AlogaclogbcBlog
2、calogcbCacbc Dcacb3总体由编号为01,02,.,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A23B21C35D324已知函数若恒成立,则实数的取值范围是( )ABCD5已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则的值为( )A2B3C4D6已知向量与的夹角为,定义为与的“向量积”,且是一个向量,它的长度,若,则( )ABC6D7九章算术勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸
3、,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为( )ABCD8已知定义在上的函数满足,且在上是增函数,不等式对于恒成立,则的取值范围是ABCD9已知集合,则全集则下列结论正确的是( )ABCD10已知集合则( )ABCD11一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是( )ABCD12如图,圆锥底面半径为,体积为,、是底面圆的两条互相垂直的直径
4、,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点的距离等于( )AB1CD二、填空题:本题共4小题,每小题5分,共20分。13展开式中项系数为160,则的值为_.14三棱柱中, ,侧棱底面,且三棱柱的侧面积为.若该三棱柱的顶点都在同一个球的表面上,则球的表面积的最小值为_15若实数满足不等式组则目标函数的最大值为_16设是公差不为0的等差数列的前项和,且,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,函数在点处的切线斜率为0.(1)试用含有的式子表示,并讨论的单调性;(2)对于函数图象上的不同两点
5、,如果在函数图象上存在点,使得在点处的切线,则称存在“跟随切线”.特别地,当时,又称存在“中值跟随切线”.试问:函数上是否存在两点使得它存在“中值跟随切线”,若存在,求出的坐标,若不存在,说明理由.18(12分)表示,中的最大值,如,己知函数,.(1)设,求函数在上的零点个数;(2)试探讨是否存在实数,使得对恒成立?若存在,求的取值范围;若不存在,说明理由.19(12分)如图,在四棱锥中,是边长为的正方形的中心,平面,为的中点.()求证:平面平面; ()若,求二面角的余弦值.20(12分)已知椭圆的左,右焦点分别为,M是椭圆E上的一个动点,且的面积的最大值为.(1)求椭圆E的标准方程,(2)若
6、,四边形ABCD内接于椭圆E,记直线AD,BC的斜率分别为,求证:为定值.21(12分)如图,三棱锥中,.(1)求证:;(2)求直线与平面所成角的正弦值.22(10分)数列满足,其前n项和为,数列的前n项积为.(1)求和数列的通项公式;(2)设,求的前n项和,并证明:对任意的正整数m、k,均有.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】由得,分别以为横纵坐标建立如图所示平面直角坐标系,由图可知,.2、B【答案解析】试题分析:对于选项A,而,所以,但不能确定的正负,所以它们的
7、大小不能确定;对于选项B,,,两边同乘以一个负数改变不等号方向,所以选项B正确;对于选项C,利用在第一象限内是增函数即可得到,所以C错误;对于选项D,利用在上为减函数易得,所以D错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.3、B【答案解析】根据随机数表法的抽样方法,确定选出来的第5个个体的编号.【题目详解】随机数表第1行的第4列和第5列数字为4和6,所以从这两个数字开始,由左向右依次选取两个数字如下46,64,42,16,60,65,80,
8、56,26,16,55,43,50,24,23,54,89,63,21,其中落在编号01,02,39,40内的有:16,26,16,24,23,21,依次不重复的第5个编号为21.故选:B【答案点睛】本小题主要考查随机数表法进行抽样,属于基础题.4、D【答案解析】由恒成立,等价于的图像在的图像的上方,然后作出两个函数的图像,利用数形结合的方法求解答案.【题目详解】因为由恒成立,分别作出及的图象,由图知,当时,不符合题意,只须考虑的情形,当与图象相切于时,由导数几何意义,此时,故.故选:D【答案点睛】此题考查的是函数中恒成立问题,利用了数形结合的思想,属于难题.5、B【答案解析】因为将函数(,)
9、的图象向右平移个单位长度后得到函数的图象,可得,结合已知,即可求得答案.【题目详解】将函数(,)的图象向右平移个单位长度后得到函数的图象,又和的图象都关于对称,由,得,即,又,.故选:B.【答案点睛】本题主要考查了三角函数图象平移和根据图象对称求参数,解题关键是掌握三角函数图象平移的解法和正弦函数图象的特征,考查了分析能力和计算能力,属于基础题.6、D【答案解析】先根据向量坐标运算求出和,进而求出,代入题中给的定义即可求解.【题目详解】由题意,则,得,由定义知,故选:D.【答案点睛】此题考查向量的坐标运算,引入新定义,属于简单题目.7、C【答案解析】由题意知:,设,则,在中,列勾股方程可解得,
10、然后由得出答案.【题目详解】解:由题意知:,设,则在中,列勾股方程得:,解得所以从该葭上随机取一点,则该点取自水下的概率为故选C.【答案点睛】本题考查了几何概型中的长度型,属于基础题.8、A【答案解析】根据奇偶性定义和性质可判断出函数为偶函数且在上是减函数,由此可将不等式化为;利用分离变量法可得,求得的最大值和的最小值即可得到结果.【题目详解】 为定义在上的偶函数,图象关于轴对称又在上是增函数 在上是减函数 ,即对于恒成立 在上恒成立,即的取值范围为:本题正确选项:【答案点睛】本题考查利用函数的奇偶性和单调性求解函数不等式的问题,涉及到恒成立问题的求解;解题关键是能够利用函数单调性将函数值的大
11、小关系转化为自变量的大小关系,从而利用分离变量法来处理恒成立问题.9、D【答案解析】化简集合,根据对数函数的性质,化简集合,按照集合交集、并集、补集定义,逐项判断,即可求出结论.【题目详解】由,则,故,由知,因此,故选:D【答案点睛】本题考查集合运算以及集合间的关系,求解不等式是解题的关键,属于基础题.10、B【答案解析】解对数不等式可得集合A,由交集运算即可求解.【题目详解】集合解得由集合交集运算可得,故选:B.【答案点睛】本题考查了集合交集的简单运算,对数不等式解法,属于基础题.11、D【答案解析】设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球的表面积公式,进而求得即可得圆锥轴截面
12、底角的大小.【题目详解】设圆锥的母线长为l,底面半径为R,则有,解得,所以圆锥轴截面底角的余弦值是,底角大小为.故选:D【答案点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.12、D【答案解析】建立平面直角坐标系,求得抛物线的轨迹方程,解直角三角形求得抛物线的焦点到圆锥顶点的距离.【题目详解】将抛物线放入坐标系,如图所示,设抛物线,代入点,可得焦点为,即焦点为中点,设焦点为,.故选:D【答案点睛】本小题考查圆锥曲线的概念,抛物线的性质,两点间的距离等基础知识;考查运算求解能力,空间想象能力,推理论证能力,应用意识.二、填空题:本题共4小题,每小题5分,共20分。13、-2【答案解析】表
13、示该二项式的展开式的第r+1项,令其指数为3,再代回原表达式构建方程求得答案.【题目详解】该二项式的展开式的第r+1项为令,所以,则故答案为:【答案点睛】本题考查由二项式指定项的系数求参数,属于简单题.14、【答案解析】分析题意可知,三棱柱为正三棱柱,所以三棱柱的中心即为外接球的球心,设棱柱的底面边长为,高为,则三棱柱的侧面积为,球的半径表示为,再由重要不等式即可得球表面积的最小值【题目详解】如下图,三棱柱为正三棱柱设,三棱柱的侧面积为又外接球半径外接球表面积.故答案为: 【答案点睛】考查学生对几何体的正确认识,能通过题意了解到题目传达的意思,培养学生空间想象力,能够利用题目条件,画出图形,寻
14、找外接球的球心以及半径,属于中档题15、12【答案解析】画出约束条件的可行域,求出最优解,即可求解目标函数的最大值【题目详解】根据约束条件画出可行域,如下图,由,解得目标函数,当过点时,有最大值,且最大值为故答案为:【答案点睛】本题考查线性规划的简单应用,属于基础题16、18【答案解析】先由,可得,再结合等差数列的前项和公式求解即可.【题目详解】解:因为,所以,.故答案为:18.【答案点睛】本题考查了等差数列基本量的运算,重点考查了等差数列的前项和公式,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),单调性见解析;(2)不存在,理由见解析【答案解析】(1)由题意得,即可得;求出函数的导数,再根据、分类讨论,分别求出、的解集即可得解;(2)假设满足条件的、存在,不妨设,且,由题意得可得,令(),构造函数(),求导后证明即可得解.【题目详解】(1)由题可得函数的定义域为且