收藏 分享(赏)

2023届吉林省安图县安林中学高三下学期第五次调研考试数学试题(含解析).doc

上传人:g****t 文档编号:15232 上传时间:2023-01-06 格式:DOC 页数:19 大小:1.81MB
下载 相关 举报
2023届吉林省安图县安林中学高三下学期第五次调研考试数学试题(含解析).doc_第1页
第1页 / 共19页
2023届吉林省安图县安林中学高三下学期第五次调研考试数学试题(含解析).doc_第2页
第2页 / 共19页
2023届吉林省安图县安林中学高三下学期第五次调研考试数学试题(含解析).doc_第3页
第3页 / 共19页
2023届吉林省安图县安林中学高三下学期第五次调研考试数学试题(含解析).doc_第4页
第4页 / 共19页
2023届吉林省安图县安林中学高三下学期第五次调研考试数学试题(含解析).doc_第5页
第5页 / 共19页
2023届吉林省安图县安林中学高三下学期第五次调研考试数学试题(含解析).doc_第6页
第6页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并

2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数在区间有三个零点,且,若,则的最小正周期为( )ABCD2执行如下的程序框图,则输出的是( )ABCD3某四棱锥的三视图如图所示,则该四棱锥的表面积为( )A8BCD4设点,不共线,则“”是“”( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分又不必要条件5已知命题,且是的必要不充分条件,则实数的取值范围为( )ABCD6如图,设为内一点,且,则与的面积之比为ABCD7已知空间两不同直线、,两不同平面,下列命题正确的是( )A若且,则B若且,则C若且,则D若不垂直于

3、,且,则不垂直于8对于定义在上的函数,若下列说法中有且仅有一个是错误的,则错误的一个是( )A在上是减函数B在上是增函数C不是函数的最小值D对于,都有9一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是( )ABCD10已知函数满足当时,且当时,;当时,且).若函数的图象上关于原点对称的点恰好有3对,则的取值范围是( )ABCD11函数(),当时,的值域为,则的范围为( )ABCD12已知集合,则等于( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设的内角的对边分别为,若,则_14已知非零向量的夹角为,且,则_.15已知数列满足,若,则数列的前n项和

4、_16函数的定义域为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.()解不等式;()设其中为常数.若方程在上恰有两个不相等的实数根,求实数的取值范围.18(12分)已知数列an满足条件,且an+2(1)n(an1)+2an+1,nN*()求数列an的通项公式;()设bn,Sn为数列bn的前n项和,求证:Sn19(12分)设函数()的最小值为.(1)求的值;(2)若,为正实数,且,证明:.20(12分)已知函数,其中(1)求函数的单调区间;若满足,且求证: (2)函数若对任意,都有,求的最大值21(12分)已知各项均为正数的数列的前项和为,且是与的等差

5、中项.(1)证明:为等差数列,并求;(2)设,数列的前项和为,求满足的最小正整数的值.22(10分)在数列和等比数列中,.(1)求数列及的通项公式;(2)若,求数列的前n项和.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】根据题意,知当时,由对称轴的性质可知和,即可求出,即可求出的最小正周期.【题目详解】解:由于在区间有三个零点,当时,由对称轴可知,满足,即.同理,满足,即,所以最小正周期为:.故选:C.【答案点睛】本题考查正弦型函数的最小正周期,涉及函数的对称性的应用,考查计

6、算能力.2、A【答案解析】列出每一步算法循环,可得出输出结果的值.【题目详解】满足,执行第一次循环,;成立,执行第二次循环,;成立,执行第三次循环,;成立,执行第四次循环,;成立,执行第五次循环,;成立,执行第六次循环,;成立,执行第七次循环,;成立,执行第八次循环,;不成立,跳出循环体,输出的值为,故选:A.【答案点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.3、D【答案解析】根据三视图还原几何体为四棱锥,即可求出几何体的表面积【题目详解】由三视图知几何体是四棱锥,如图,且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长

7、为2,棱锥的高为2,所以,故选:【答案点睛】本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题.4、C【答案解析】利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【题目详解】由于点,不共线,则“”;故“”是“”的充分必要条件.故选:C.【答案点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.5、D【答案解析】求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【题目详解】解:命题,即: ,是的必要不充分条件,解得实数的取值范围为故选:【答案点睛】本题考查根据充分、必要条件求参

8、数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解(2)求解参数的取值范围时, 一定要注意区间端点值的检验6、A【答案解析】作交于点,根据向量比例,利用三角形面积公式,得出与的比例,再由与的比例,可得到结果.【题目详解】如图,作交于点,则,由题意,且,所以又,所以,即,所以本题答案为A.【答案点睛】本题考查三角函数与向量的结合,三角形面积公式,属基础题,作出合适的辅助线是本题的关键.7、C【答案解析】因答案A中的直线可以异面或相交,故不正确;答案B中的直线也成立,故不正确;答案C中的直线可以平移到平

9、面中,所以由面面垂直的判定定理可知两平面互相垂直,是正确的;答案D中直线也有可能垂直于直线,故不正确应选答案C8、B【答案解析】根据函数对称性和单调性的关系,进行判断即可【题目详解】由得关于对称,若关于对称,则函数在上不可能是单调的,故错误的可能是或者是,若错误,则在,上是减函数,在在上是增函数,则为函数的最小值,与矛盾,此时也错误,不满足条件故错误的是,故选:【答案点睛】本题主要考查函数性质的综合应用,结合对称性和单调性的关系是解决本题的关键9、C【答案解析】根据组合几何体的三视图还原出几何体,几何体是圆柱中挖去一个三棱柱,从而解得几何体的体积.【题目详解】由几何体的三视图可得,几何体的结构

10、是在一个底面半径为1的圆、高为2的圆柱中挖去一个底面腰长为的等腰直角三角形、高为2的棱柱,故此几何体的体积为圆柱的体积减去三棱柱的体积,即,故选C.【答案点睛】本题考查了几何体的三视图问题、组合几何体的体积问题,解题的关键是要能由三视图还原出组合几何体,然后根据几何体的结构求出其体积.10、C【答案解析】先作出函数在上的部分图象,再作出关于原点对称的图象,分类利用图像列出有3个交点时满足的条件,解之即可.【题目详解】先作出函数在上的部分图象,再作出关于原点对称的图象,如图所示,当时,对称后的图象不可能与在的图象有3个交点;当时,要使函数关于原点对称后的图象与所作的图象有3个交点,则,解得.故选

11、:C.【答案点睛】本题考查利用函数图象解决函数的交点个数问题,考查学生数形结合的思想、转化与化归的思想,是一道中档题.11、B【答案解析】首先由,可得的范围,结合函数的值域和正弦函数的图像,可求的关于实数的不等式,解不等式即可求得范围.【题目详解】因为,所以,若值域为,所以只需,.故选:B【答案点睛】本题主要考查三角函数的值域,熟悉正弦函数的单调性和特殊角的三角函数值是解题的关键,侧重考查数学抽象和数学运算的核心素养.12、A【答案解析】进行交集的运算即可【题目详解】,1,2,1,故选:【答案点睛】本题主要考查了列举法、描述法的定义,考查了交集的定义及运算,考查了计算能力,属于基础题二、填空题

12、:本题共4小题,每小题5分,共20分。13、或【答案解析】试题分析:由,则可运用同角三角函数的平方关系:,已知两边及其对角,求角用正弦定理;,则;可得考点:运用正弦定理解三角形(注意多解的情况判断)14、1【答案解析】由已知条件得出,可得,解之可得答案.【题目详解】向量的夹角为,且,可得:,可得,解得,故答案为:1.【答案点睛】本题考查根据向量的数量积运算求向量的模,关键在于将所求的向量的模平方,利用向量的数量积化简求解即可,属于基础题.15、【答案解析】,求得的通项,进而求得,得通项公式,利用等比数列求和即可.【题目详解】由题为等差数列,,故答案为【答案点睛】本题考查求等差数列数列通项,等比

13、数列求和,熟记等差等比性质,熟练运算是关键,是基础题.16、【答案解析】由题意得,解得定义域为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、();().【答案解析】(I)零点分段法,分,讨论即可;(II),分,三种情况讨论.【题目详解】原不等式即.当时,化简得.解得;当时,化简得.此时无解;当时,化简得.解得.综上,原不等式的解集为由题意,设方程两根为.当时,方程等价于方程.易知当,方程在上有两个不相等的实数根.此时方程在上无解.满足条件.当时,方程等价于方程,此时方程在上显然没有两个不相等的实数根.当时,易知当,方程在上有且只有一个实数根.此时方程在上也有一个实数根.满足条件.综上,实数的取值范围为.【答案点睛】本题考查解绝对值不等式以及方程根的个数求参数范围,考查学生的运算能力,是一道中档题.18、()()证明见解析【答案解析】()由an+2(1)n(an1)+2an+1,对分奇偶讨论,即可得;()由()得,用错位相减法求出,运用分析法证明即可.【题目详解】(),当为奇数时,又由,得,当为偶数时,又由a23,得,;()由(1)得,则-可得:,若证明Sn,则需要证明,又,即证明,即证,又显然成立,故Sn得证.【答案点睛】本题主要考查了由递推公式求通项公式,错位相减法求前项和,分析法证明不等式,考查了分类讨论的思想,考查了学生的运算

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 教辅习题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2