1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是( )ABCD以上情况均有可能2
2、如图是一个几何体的三视图,则该几何体的体积为()ABCD3已知函数若函数在上零点最多,则实数的取值范围是( )ABCD4的展开式中的系数为( )ABCD5已知集合Ay|y,Bx|ylg(x2x2),则R(AB)( )A0,)B(,0),+)C(0,)D(,0,+)6已知是边长为1的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则的值为( )ABCD7已知数列满足,则( )ABCD8等差数列中,已知,且,则数列的前项和中最小的是( )A或BCD9已知,则( )ABCD10如图,四面体中,面和面都是等腰直角三角形,且二面角的大小为,若四面体的顶点都在球上,则球的表面积为( )ABCD11
3、已知,其中是虚数单位,则对应的点的坐标为( )ABCD12设复数满足(为虚数单位),则在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限二、填空题:本题共4小题,每小题5分,共20分。13已知,且,则的最小值是_.14一个算法的伪代码如图所示,执行此算法,最后输出的T的值为_.15已知数列的前项和公式为,则数列的通项公式为_16已知复数,其中为虚数单位,若复数为纯虚数,则实数的值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于、两点,且.(1)求抛物线的方程;(2)设为抛物线上任意一点(异于顶点
4、),过做倾斜角互补的两条直线、,交抛物线于另两点、,记抛物线在点的切线的倾斜角为,直线的倾斜角为,求证:与互补.18(12分)已知首项为2的数列满足.(1)证明:数列是等差数列(2)令,求数列的前项和.19(12分)已知函数.(1)当时,解不等式;(2)当时,不等式恒成立,求实数的取值范围.20(12分)已知如图1,在RtABC中,ACB=30,ABC=90,D为AC中点,AEBD于E,延长AE交BC于F,将ABD沿BD折起,使平面ABD平面BCD,如图2所示。()求证:AE平面BCD; ()求二面角A-DC-B的余弦值; ()求三棱锥B-AEF与四棱锥A-FEDC的体积的比(只需写出结果,不
5、要求过程)21(12分)如图,在矩形中,点是边上一点,且,点是的中点,将沿着折起,使点运动到点处,且满足.(1)证明:平面;(2)求二面角的余弦值.22(10分)在平面直角坐标系中,曲线的参数方程是(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.()求曲线的普通方程与直线的直角坐标方程;()已知直线与曲线交于,两点,与轴交于点,求.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】由已知可求得函数的周期,根据周期及偶函数的对称性可求在上的单调性,结合三角
6、函数的性质即可比较【题目详解】由可得,即函数的周期,因为在区间上单调递减,故函数在区间上单调递减,根据偶函数的对称性可知,在上单调递增,因为,是锐角三角形的两个内角,所以且即,所以即,故选:【答案点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键2、A【答案解析】根据三视图可得几何体为直三棱柱,根据三视图中的数据直接利用公式可求体积.【题目详解】由三视图可知几何体为直三棱柱,直观图如图所示:其中,底面为直角三角形,高为.该几何体的体积为故选:A.【答案点睛】本题考查三视图及棱柱的体积,属于基础题.3、D【答案解析】将函数的零点个数问题转化为函数与直线的交点的个
7、数问题,画出函数的图象,易知直线过定点,故与在时的图象必有两个交点,故只需与在时的图象有两个交点,再与切线问题相结合,即可求解.【题目详解】由图知与有个公共点即可,即,当设切点,则,.故选:D.【答案点睛】本题考查了函数的零点个数的问题,曲线的切线问题,注意运用转化思想和数形结合思想,属于较难的压轴题.4、C【答案解析】由题意,根据二项式定理展开式的通项公式,得展开式的通项为,则展开式的通项为,由,得,所以所求的系数为.故选C.点睛:此题主要考查二项式定理的通项公式的应用,以及组合数、整数幂的运算等有关方面的知识与技能,属于中低档题,也是常考知识点.在二项式定理的应用中,注意区分二项式系数与系
8、数,先求出通项公式,再根据所求问题,通过确定未知的次数,求出,将的值代入通项公式进行计算,从而问题可得解.5、D【答案解析】求函数的值域得集合,求定义域得集合,根据交集和补集的定义写出运算结果.【题目详解】集合Ay|yy|y00,+);Bx|ylg(x2x2)x|x2x20x|0x(0,),AB(0,),R(AB)(,0,+).故选:D.【答案点睛】该题考查的是有关集合的问题,涉及到的知识点有函数的定义域,函数的值域,集合的运算,属于基础题目.6、D【答案解析】设,作为一个基底,表示向量,然后再用数量积公式求解.【题目详解】设,所以,所以.故选:D【答案点睛】本题主要考查平面向量的基本运算,还
9、考查了运算求解的能力,属于基础题.7、C【答案解析】利用的前项和求出数列的通项公式,可计算出,然后利用裂项法可求出的值.【题目详解】.当时,;当时,由,可得,两式相减,可得,故,因为也适合上式,所以.依题意,故.故选:C.【答案点睛】本题考查利用求,同时也考查了裂项求和法,考查计算能力,属于中等题.8、C【答案解析】设公差为,则由题意可得,解得,可得.令,可得当时,当时,由此可得数列前项和中最小的.【题目详解】解:等差数列中,已知,且,设公差为,则,解得,.令,可得,故当时,当时,故数列前项和中最小的是.故选:C.【答案点睛】本题主要考查等差数列的性质,等差数列的通项公式的应用,属于中档题.9
10、、C【答案解析】利用诱导公式得,再利用倍角公式,即可得答案.【题目详解】由可得,.故选:C.【答案点睛】本题考查诱导公式、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数的符号.10、B【答案解析】分别取、的中点、,连接、,利用二面角的定义转化二面角的平面角为,然后分别过点作平面的垂线与过点作平面的垂线交于点,在中计算出,再利用勾股定理计算出,即可得出球的半径,最后利用球体的表面积公式可得出答案【题目详解】如下图所示,分别取、的中点、,连接、,由于是以为直角等腰直角三角形,为的中点,且、分别为、的中点,所以,所以,所以二面角的平面角为,则,且,所
11、以,是以为直角的等腰直角三角形,所以,的外心为点,同理可知,的外心为点,分别过点作平面的垂线与过点作平面的垂线交于点,则点在平面内,如下图所示,由图形可知,在中,所以,所以,球的半径为,因此,球的表面积为.故选:B.【答案点睛】本题考查球体的表面积,考查二面角的定义,解决本题的关键在于找出球心的位置,同时考查了计算能力,属于中等题11、C【答案解析】利用复数相等的条件求得,则答案可求【题目详解】由,得,对应的点的坐标为,故选:【答案点睛】本题考查复数的代数表示法及其几何意义,考查复数相等的条件,是基础题12、A【答案解析】由复数的除法运算可整理得到,由此得到对应的点的坐标,从而确定所处象限.【
12、题目详解】由得:,对应的点的坐标为,位于第一象限.故选:.【答案点睛】本题考查复数对应的点所在象限的求解,涉及到复数的除法运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】先将前两项利用基本不等式去掉,再处理只含的算式即可【题目详解】解:,因为,所以,所以,当且仅当,时等号成立,故答案为:1【答案点睛】本题主要考查基本不等式的应用,但是由于有3个变量,导致该题不易找到思路,属于中档题14、【答案解析】由程序中的变量、各语句的作用,结合流程图所给的顺序,模拟程序的运行,即可得到答案.【题目详解】根据题中的程序框图可得:,执行循环体,不满足条件,执行循环体,此时
13、,满足条件,退出循环,输出的值为.故答案为:【答案点睛】本题主要考查了程序和算法,依次写出每次循环得到的,的值是解题的关键,属于基本知识的考查.15、【答案解析】由题意,根据数列的通项与前n项和之间的关系,即可求得数列的通项公式【题目详解】由题意,可知当时,;当时,. 又因为不满足,所以.【答案点睛】本题主要考查了利用数列的通项与前n项和之间的关系求解数列的通项公式,其中解答中熟记数列的通项与前n项和之间的关系,合理准确推导是解答的关键,着重考查了推理与运算能力,属于基础题16、2【答案解析】由题,得,然后根据纯虚数的定义,即可得到本题答案.【题目详解】由题,得,又复数为纯虚数,所以,解得.故答案为:2【答案点睛】本题主要考查纯虚数定义的应用,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【答案解析】(1)根据题意,设直线方程为,联立方程,根据抛物线的定义即可得到结论;(2)根据题意,设的方程为,联立方程得,同理可得,进而得到,再利用点差法得直线的斜率,利用切线与导数的关系得直线的斜率,进而可得与互补.【题目详解】(1)由题意设直线的方程为,令、,联立,得,根据抛物线的定义得,又,故所求抛物线方程为.(2)依题意,设,设的方程为,与联立消去得,同理,直线的斜率=切线的斜率,由,即与互补.【答案点睛