1、平安等级特征量及其计算方法 【摘要】指出了目前用模糊评价法确定系统的平安等级所存在的问题和缺乏之处。分别运用模糊随机变量理论和模糊集理论而提出了平安等级模糊随机特征量和平安等级模糊特征量的概念及其计算方法。平安等级特征量及平安等级变量,均为平安等级取值论域上的模糊子集,而并非是一个确定的点。还给出了平安等级的绝对可能性和相对可能性的计算方法。实例说明,笔者所提出的平安等级特征量及可能性的计算方法是科学的、合理的。 【关键词】平安等级评价模糊随机特征量模糊特征量可能性 Characteristic Quantity of Safety Grade and Its Calculation Meth
2、od Xu KailiChen Baozhi ( School of Resource and Civil Engineering, Northeast University) Chen Quan (Center for Accident Investigation and Analysis, State Economic and Trade Commission) AbstractUsing the method of fuzzy evaluation, existing problems and shortcomings are pointed out as the time of sys
3、tem safety grade being defined. By using fuzzy random variable theory and fuzzy set theory, the concept and its calculation method of fuzzy random characteristic quantity of safety grade are put forward. Both characteristic quantity of safety grade and its variable are the value obtained from the fu
4、zzy sub-set of safety grade on domain, and are not a definite point. Calculation method of absolute and relative possibility is also given. System safety in future can be evaluated and forecasted in a definite condition by the calculation method of fuzzy random characteristic quantity of safety grad
5、e. Examples demonstrate that calculation method of characteristic quantity of safety grade and the possibility pointed out in this paper are scientific and rational. Key words:Safety gradeEvaluationFuzzy random characteristic quantity Fuzzy characteristic quantityPossibility 1系统平安等级的模糊性 在评价系统的平安水平或等
6、级时,人们常用“极其平安、“十分平安、“十分危险和“极其危险等不确定性的语言表达方式。这是因为平安和危险是相对的,两者具有亦此亦彼的过渡性质,即具有模糊性。因此,要准确、客观地描述系统的平安等级却十分困难,只能尽可能地使评价结果符合客观实际。其原因是影响系统平安性的因素众多而复杂,且具有模糊性。例如,机械设备可靠性及平安管理水平的“高与“低,环境条件的“优与“劣,人、机配合的“好与“差,等等。在进行评价时,所获得的原始数据也具有模糊性。当然,也不能排除在某些系统中,影响其平安的因素具有确定性,其平安等级也具有确定性的情况。根据模糊集理论,确定性可以看作是模糊性或随机性的一个特例。所以,不管系统
7、的复杂性如何,其平安性均可采用模糊集理论进行评价。系统平安评价的非模糊集方法往往也包含有模糊性。例如,采用概率评价法时最终所得结果是系统处于平安或危险状态的概率,尽管概率值是确定的,但它所代表的含义那么具有模糊性。等级系数法和DOW化学公司的火灾爆炸指数法的评价结果也具有同样的性质。可见,系统平安状态的模糊性已成为人们的共识。可以说,模糊集方法是评价系统平安性的最好的方法之一。采用模糊集方法进行平安评价时,所得结果是对应于各平安等级的隶属度,然后按照最大隶属原那么或评分法确定系统的平安等级。目前,此法也存在如下问题:最大隶属原那么会丧失许多信息1,存在着使评价结果失真的可能性。计算评分值时,与
8、平安等级论域U相对应的分数的选取不尽合理;一个确定的总分值是相空间中的一个点,而不是一个模糊集合,既不符合模糊集理论,同时也很难反映系统实际的平安状况,亦即其评价结果可能高于或低于实际的平安等级。笔者对这些问题,作了初步研究和探讨。 2平安等级特征量 系统平安评价可分为对系统未来状况和对系统现状的平安评价。对于系统未来状况的平安评价可以称作预评价,它分现实系统的预评价和待建系统的预评价。本文讨论前一种情况。对于现实系统未来的平安性,由于无法控制条件,一些偶然因素使系统运行的结果不可能准确地预先掌握,故具有随机性。平安本身就是一个模糊概念。所以,对系统未来的平安评价可以运用模糊随机变量理论。模糊
9、随机变量的概念于1978年由H.Kwakernaak首次提出的,随后,国内外不少学者对模糊随机变量进行了研究46。由于系统的现状是已经发生的事件,所以具有确定性。但由于人们所掌握的信息是模糊的,且平安本身具有模糊性,所以,对系统现状的评价要使用模糊集理论。 2.1平安等级模糊随机特征量与平安等级模糊特征量 系统平安等级或平安状态不宜分得过少,但也不宜过多。不失一般性,将系统平安等级分成c级,那么其论域为U,并定义ui,i1,2,c,随着i的增大,系统平安性增加,危险性降低。令i对于,也可以定义相反的情况。 对系统进行模糊综合评价后,所得出的对各平安等级的隶属度向量为并且, 是(,A,P)上的模
10、糊随机变量。对于i1,2,c,可得46随机区间为针对及模糊集理论,构造如下的对称三角闭模糊数,即除对称的三角模糊数外,也可用三角函数型模糊数。三角函数型模糊数为选用对称的三角模糊数比较符合人们的习惯,且计算方便,所以应用较多。 由式(4)可得随机区间,即用于确定平安等级的上的集合称为平安等级特征量。根据模糊随机变量理论,考虑现实系统未来状况的平安等级变量的模糊随机性时,可得如下的平安等级模糊随机特征量,即其水平集为当0时,H0FR为平安等级模糊随机特征量的支集。其特征量的中值为:如果平安等级模糊随机变量的方差存在,对(0,1,那么有6式中, 对系统的现状进行平安评价时,通常是根据隶属度向量计算
11、特征量的加权平均值1 ,即式中,X(i)为相空间中一个确定的点。 在现有的模糊综合评价中,不同的文献对X(i)的取值不同。有的取各平安等级对应区间值的下限,有的取中值,也有的按照最大隶属原那么及区间宽度来取值。不同的取值会导致不同的计算结果,平安等级也有可能存在差异,从而人为地使平安等级高于或低于实际的平安等级。对系统现状进行平安评价时,平安等级变量不是相空间中的一个确定点,也就是不具有确定性,而具有模糊性,即为一随机区间。那么,可以定义以下的平安等级模糊特征量,即尽管式(14)与式(7)相似,且但其意义截然不同,因为概率和隶属度是两个不同的量。由于,当采用对称三角模糊数时,平安等级模糊特征量
12、为此时,有100的把握保证平安等级落在该区间内。平安等级模糊特征量的中值为:在划分系统平安等级时,除规定上述取值论域,即取值愈大,系统平安等级愈高外,有时采用、的平安等级划分方式。此时在系统平安等级论域U中,随着i的增大系统平安性降低,危险性增加。与U相对应的取值论域定义为:针对,在计算平安等级特征量时,可利用式(4)的对称三角模糊数和式(5)的三角函数型模糊数。平安等级模糊随机特征量及其水平集、中值、方差,模糊特征量及其中值,可分别按照式(6)(16)进行计算。 2.2平安等级的可能性 1)现实系统预评价平安等级的相对可能性和绝对可能性 设在水平上,平安等级模糊随机特征量为HFR=H-FR,
13、H+FR,那么可以定义现实系统预评价平安等级的相对可能性,即: 当时,平安等级为等级的相对可能性为Ri=100%,其绝对可能性为Ai=1-。 当 时,平安等级为级的相对可能性为:其绝对可能性为:为等级的相对可能性为:绝对可能性为:以上各式中()为计算平安等级模糊随机特征量时所构造的隶属函数。 2)对系统现状评价的平安等级的可能性 对系统现状评价的平安等级只存在绝对可能性,而不存在相对可能性。将其称为平安等级的绝对可能性,简称为平安等级的可能性。 当时,平安等级为等级的可能性为100。 当时,平安等级为等级的可能性为:为+1等级的可能性为:以上各式中为计算平安等级模糊特征量时所构造的隶属函数。