收藏 分享(赏)

2023届山西省吕梁市重点中学高三六校第一次联考数学试卷(含解析).doc

上传人:la****1 文档编号:19067 上传时间:2023-01-06 格式:DOC 页数:19 大小:1.89MB
下载 相关 举报
2023届山西省吕梁市重点中学高三六校第一次联考数学试卷(含解析).doc_第1页
第1页 / 共19页
2023届山西省吕梁市重点中学高三六校第一次联考数学试卷(含解析).doc_第2页
第2页 / 共19页
2023届山西省吕梁市重点中学高三六校第一次联考数学试卷(含解析).doc_第3页
第3页 / 共19页
2023届山西省吕梁市重点中学高三六校第一次联考数学试卷(含解析).doc_第4页
第4页 / 共19页
2023届山西省吕梁市重点中学高三六校第一次联考数学试卷(含解析).doc_第5页
第5页 / 共19页
2023届山西省吕梁市重点中学高三六校第一次联考数学试卷(含解析).doc_第6页
第6页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在展开式中的常数项为A1B2C3D72已知函数,若存在实数,使成立,则正数的取值范围为()ABCD3 “”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4

2、祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设、为两个同高的几何体,、的体积不相等,、在等高处的截面积不恒相等.根据祖暅原理可知,是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件5在中,角、所对的边分别为、,若,则( )ABCD6如图,在平行四边形中,为对角线的交点,点为平行四边形外一点,且,则( )ABCD7函数的单调递增区间是( )ABCD8已知函数是上的偶函数,是的奇函数,且,则的值为( )ABCD9已知直线:过双曲线的一个焦点且与其中一条渐近线平行,则双曲线的方程为( )ABCD10复数满足,则( )A

3、BCD11已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则下述四个结论:点为函数的一个对称中心其中所有正确结论的编号是( )ABCD12已知F为抛物线y24x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则|FA|FB|的值等于()AB8CD4二、填空题:本题共4小题,每小题5分,共20分。13公比为正数的等比数列的前项和为,若,则的值为_14已知函数的部分图象如图所示,则的值为_. 15已知实数满足则的最大值为_.16已知公差大于零的等差数列中,、依次成等比数列,则的值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)新高

4、考,取消文理科,实行“”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在称为中青年,年龄在称为中老年),并把调查结果制成下表:年龄(岁)频数515101055了解4126521(1)分别估计中青年和中老年对新高考了解的概率;(2)请根据上表完成下面列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?了解新高考不了解新高考总计中青年中老年总计附:.0.0500.0100.0013.8416.63510.828(3)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人

5、中了解新高考的人数为,求的分布列以及.18(12分)已知函数.(1)讨论的单调性;(2)若函数在上存在两个极值点,且,证明.19(12分)如图,在四棱锥中,.(1)证明:平面;(2)若,为线段上一点,且,求直线与平面所成角的正弦值.20(12分)如图,正方体的棱长为2,为棱的中点.(1)面出过点且与直线垂直的平面,标出该平面与正方体各个面的交线(不必说明画法及理由);(2)求与该平面所成角的正弦值.21(12分)已知函数的图象在处的切线方程是.(1)求的值;(2)若函数,讨论的单调性与极值;(3)证明:.22(10分)已知的面积为,且.(1)求角的大小及长的最小值;(2)设为的中点,且,的平分

6、线交于点,求线段的长.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】求出展开项中的常数项及含的项,问题得解。【题目详解】展开项中的常数项及含的项分别为:,,所以展开式中的常数项为:.故选:D【答案点睛】本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。2、A【答案解析】根据实数满足的等量关系,代入后将方程变形,构造函数,并由导函数求得的最大值;由基本不等式可求得的最小值,结合存在性问题的求法,即可求得正数的取值范围.【题目详解】函数,由题意得,即,

7、令,在上单调递增,在上单调递减,而,当且仅当,即当时,等号成立,.故选:A.【答案点睛】本题考查了导数在求函数最值中的应用,由基本不等式求函数的最值,存在性成立问题的解法,属于中档题.3、B【答案解析】或,从而明确充分性与必要性.【题目详解】,由可得:或,即能推出,但推不出“”是“”的必要不充分条件故选【答案点睛】本题考查充分性与必要性,简单三角方程的解法,属于基础题.4、A【答案解析】由题意分别判断命题的充分性与必要性,可得答案.【题目详解】解:由题意,若、的体积不相等,则、在等高处的截面积不恒相等,充分性成立;反之,、在等高处的截面积不恒相等,但、的体积可能相等,例如是一个正放的正四面体,

8、一个倒放的正四面体,必要性不成立,所以是的充分不必要条件,故选:A.【答案点睛】本题主要考查充分条件、必要条件的判定,意在考查学生的逻辑推理能力.5、D【答案解析】利用余弦定理角化边整理可得结果.【题目详解】由余弦定理得:,整理可得:,.故选:.【答案点睛】本题考查余弦定理边角互化的应用,属于基础题.6、D【答案解析】连接,根据题目,证明出四边形为平行四边形,然后,利用向量的线性运算即可求出答案【题目详解】连接,由,知,四边形为平行四边形,可得四边形为平行四边形,所以.【答案点睛】本题考查向量的线性运算问题,属于基础题7、D【答案解析】利用辅助角公式,化简函数的解析式,再根据正弦函数的单调性,

9、并采用整体法,可得结果.【题目详解】因为,由,解得,即函数的增区间为,所以当时,增区间的一个子集为.故选D.【答案点睛】本题考查了辅助角公式,考查正弦型函数的单调递增区间,重点在于把握正弦函数的单调性,同时对于整体法的应用,使问题化繁为简,难度较易.8、B【答案解析】根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出.【题目详解】为上的奇函数,而函数是上的偶函数,故为周期函数,且周期为故选:B【答案点睛】本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.9、A【答案解析】根据直线:过双曲线的一个焦点,得,又和其中一条渐近线平行,得到,再求双曲线方程

10、.【题目详解】因为直线:过双曲线的一个焦点,所以,所以,又和其中一条渐近线平行,所以,所以,所以双曲线方程为.故选:A.【答案点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题.10、C【答案解析】利用复数模与除法运算即可得到结果.【题目详解】解: ,故选:C【答案点睛】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.11、B【答案解析】首先根据三角函数的平移规则表示出,再根据对称性求出、,即可求出的解析式,从而验证可得;【题目详解】解:由题意可得,又和的图象都关于对称,解得,即,又,正确,错误.故选:B【答案点睛】本题考查三角函数的性质的应用,三角函数的变换

11、规则,属于基础题.12、C【答案解析】将直线方程代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出的值【题目详解】F(1,0),故直线AB的方程为yx1,联立方程组,可得x26x+10,设A(x1,y1),B(x2,y2),由根与系数的关系可知x1+x26,x1x21由抛物线的定义可知:|FA|x1+1,|FB|x2+1,|FA|FB|x1x2|故选C【答案点睛】本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、56【答案解析】根据已知条件求等比数列的首项和公比,再代入等比数列的通项公式,即可得到答案.【题目详解】,.故答案为

12、:.【答案点睛】本题考查等比数列的通项公式和前项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.14、【答案解析】由图可得的周期、振幅,即可得,再将代入可解得,进一步求得解析式及.【题目详解】由图可得,所以,即,又,即,又,故,所以,.故答案为:【答案点睛】本题考查由图象求解析式及函数值,考查学生识图、计算等能力,是一道中档题.15、【答案解析】直接利用柯西不等式得到答案.【题目详解】根据柯西不等式:,故,当,即,时等号成立.故答案为:.【答案点睛】本题考查了柯西不等式求最值,也可以利用均值不等式,三角换元求得答案.16、【答案解析】利用等差数列的通项公式以及等比中

13、项的性质,化简求出公差与的关系,然后转化求解的值.【题目详解】设等差数列的公差为,则,由于、依次成等比数列,则,即,解得,因此,.故答案为:.【答案点睛】本题考查等差数列通项公式以及等比中项的应用,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析,有95%的把握判断了解新高考与年龄(中青年、中老年)有关联;(3)分布列见解析,.【答案解析】(1)分别求出中青年、中老年对高考了解的频数,即可求出概率;(2)根据数据列出列联表,求出的观测值,对照表格,即可得出结论;(3)年龄在的被调查者共5人,其中了解新高考的有2人,可能取值为0,1,2,分别求出概率,列出随机变量分布列,根据期望公式即可求解.【题目详解】(1)由题中数据可知,中青年对新高考了解的概率,中老年对新高考了解的概率.(2)列联表如图所示了解新高考不了解新高考总计中青年22830老年81220总计302050,所以有95%的把握判断了解新高考与年龄(中青年、中老年)有关联.(3)年龄在的被调查者共5人,其中了解新高考的有2人,则抽取的3人中了解新高考的人数可能取值为0,1,2,则;.所以的分

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 实用范文 > 工作计划

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2