1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设复数满足,则( )ABCD2一个正三角形的三个顶点都在双曲线的右支上,且其中一个顶点在双曲线的右
2、顶点,则实数的取值范围是( )ABCD3函数的部分图象如图中实线所示,图中圆与的图象交于两点,且在轴上,则下列说法中正确的是A函数的最小正周期是B函数的图象关于点成中心对称C函数在单调递增D函数的图象向右平移后关于原点成中心对称4若为过椭圆中心的弦,为椭圆的焦点,则面积的最大值为( )A20B30C50D605已知双曲线的一条渐近线方程是,则双曲线的离心率为( )ABCD6若复数满足,则( )ABCD7已知复数z满足(i为虚数单位),则在复平面内复数z对应的点位于( )A第一象限B第二象限C第三象限D第四象限8执行如图所示的程序框图,若输出的,则输入的整数的最大值为( )A7B15C31D63
3、9设,是非零向量.若,则( )ABCD10已知,则( )ABC3D411已知,则的大小关系为( )ABCD12已知函数f(x)sin2x+sin2(x),则f(x)的最小值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知关于x的不等式(axa24)(x4)0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_14已知,且,则_15已知ABC得三边长成公比为的等比数列,则其最大角的余弦值为_.16已知随机变量服从正态分布,若,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,点分别为椭圆的左、右顶点,直线交于另一点为等腰直角三
4、角形,且.()求椭圆的方程;()设过点的直线与椭圆交于两点,总使得为锐角,求直线斜率的取值范围.18(12分)已知数列为公差为d的等差数列,且,依次成等比数列,.(1)求数列的前n项和;(2)若,求数列的前n项和为.19(12分)设(1)当时,求不等式的解集;(2)若,求的取值范围.20(12分)在四棱锥中,是等边三角形,点在棱上,平面平面(1)求证:平面平面;(2)若,求直线与平面所成角的正弦值的最大值;(3)设直线与平面相交于点,若,求的值21(12分)在最新公布的湖南新高考方案中,“”模式要求学生在语数外3门全国统考科目之外,在历史和物理2门科目中必选且只选1门,再从化学、生物、地理、政
5、治4门科目中任选2门,后三科的高考成绩按新的规则转换后计入高考总分.相应地,高校在招生时可对特定专业设置具体的选修科目要求.双超中学高一年级有学生1200人,现从中随机抽取40人进行选科情况调查,用数字16分别依次代表历史、物理、化学、生物、地理、政治6科,得到如下的统计表:序号选科情况序号选科情况序号选科情况序号选科情况113411236211563123522351223422235322363235131452324533235414514135242353413551561523625256351566245162362615636236725617156271343715682351
6、82362823538134923519145292463923510236202353015640245(1)双超中学规定:每个选修班最多编排50人且尽量满额编班,每位老师执教2个选修班(当且仅当一门科目的选课班级总数为奇数时,允许这门科目的1位老师只教1个班).已知双超中学高一年级现有化学、生物科目教师每科各8人,用样本估计总体,则化学、生物两科的教师人数是否需要调整?如果需要调整,各需增加或减少多少人?(2)请创建列联表,运用独立性检验的知识进行分析,探究是否有的把握判断学生“选择化学科目”与“选择物理科目”有关.附:0.1000.0500.0100.0012.7063.8416.635
7、10.828(3)某高校在其热门人文专业的招生简章中明确要求,仅允许选修了历史科目,且在政治和地理2门中至少选修了1门的考生报名.现从双超中学高一新生中随机抽取3人,设具备高校专业报名资格的人数为,用样本的频率估计概率,求的分布列与期望.22(10分)在中,角所对的边分别为,若,且.(1)求角的值;(2)求的最大值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】根据复数运算,即可容易求得结果.【题目详解】.故选:D.【答案点睛】本题考查复数的四则运算,属基础题.2、D【答案解析
8、】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,将其代入双曲线可解得【题目详解】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,将其代入双曲线方程得:,即,由得故选:【答案点睛】本题考查了双曲线的性质,意在考查学生对这些知识的理解掌握水平3、B【答案解析】根据函数的图象,求得函数,再根据正弦型函数的性质,即可求解,得到答案【题目详解】根据给定函数的图象,可得点的横坐标为,所以,解得,所以的最小正周期, 不妨令,由周期,所以,又,所以,所以,令,解得,当时,即函数的一个对称中心为,即函数的图象关于点成中心对称故选B【答案点睛】
9、本题主要考查了由三角函数的图象求解函数的解析式,以及三角函数的图象与性质,其中解答中根据函数的图象求得三角函数的解析式,再根据三角函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及运算与求解能力,属于基础题4、D【答案解析】先设A点的坐标为,根据对称性可得,在表示出面积,由图象遏制,当点A在椭圆的顶点时,此时面积最大,再结合椭圆的标准方程,即可求解.【题目详解】由题意,设A点的坐标为,根据对称性可得,则的面积为,当最大时,的面积最大,由图象可知,当点A在椭圆的上下顶点时,此时的面积最大,又由,可得椭圆的上下顶点坐标为,所以的面积的最大值为.故选:D. 【答案点睛】本题主要考查了椭圆
10、的标准方程及简单的几何性质,以及三角形面积公式的应用,着重考查了数形结合思想,以及化归与转化思想的应用.5、D【答案解析】双曲线的渐近线方程是,所以,即 , ,即 ,故选D.6、C【答案解析】化简得到,再计算复数模得到答案.【题目详解】,故,故,.故选:.【答案点睛】本题考查了复数的化简,共轭复数,复数模,意在考查学生的计算能力.7、D【答案解析】根据复数运算,求得,再求其对应点即可判断.【题目详解】,故其对应点的坐标为.其位于第四象限.故选:D.【答案点睛】本题考查复数的运算,以及复数对应点的坐标,属综合基础题.8、B【答案解析】试题分析:由程序框图可知:,;,;,;,;,. 第步后输出,此
11、时,则的最大值为15,故选B.考点:程序框图.9、D【答案解析】试题分析:由题意得:若,则;若,则由可知,故也成立,故选D.考点:平面向量数量积.【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);将条件通过向量的线性运算进行转化,再利用求解(较难);建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.10、A【答案解析】根据复数相等的特征,求出和
12、,再利用复数的模公式,即可得出结果.【题目详解】因为,所以,解得则.故选:A.【答案点睛】本题考查相等复数的特征和复数的模,属于基础题.11、A【答案解析】根据指数函数与对数函数的单调性,借助特殊值即可比较大小.【题目详解】因为,所以.因为,所以,因为,为增函数,所以所以,故选:A.【答案点睛】本题主要考查了指数函数、对数函数的单调性,利用单调性比较大小,属于中档题.12、A【答案解析】先通过降幂公式和辅助角法将函数转化为,再求最值.【题目详解】已知函数f(x)sin2x+sin2(x),=,=,因为,所以f(x)的最小值为.故选:A【答案点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用
13、,还考查了运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、-1【答案解析】讨论三种情况,a0时,根据均值不等式得到a(a)14,计算等号成立的条件得到答案.【题目详解】已知关于x的不等式(axa14)(x4)0,a0时,x(a)(x4)0,其中a0,故解集为(a,4),由于a(a)14,当且仅当a,即a1时取等号,a的最大值为4,当且仅当a4时,A中共含有最少个整数,此时实数a的值为1;a0时,4(x4)0,解集为(,4),整数解有无穷多,故a0不符合条件; a0时,x(a)(x4)0,其中a4,故解集为(,4)(a,+),整数解有无穷多,故a0不符合条件;综上所述,a1故答案为:1【答案点睛】本题考查了解不等式,均值不等式,意在考查学生的计算能力和综合应用能力.14、【答案解析】试题分析:因,故,所以,,应填.考点:三角变换及运用15、【答案解析】试题分析:根据题意设三角形的三边长分别设为为,所对的角为最大角,设为,则根据余弦定理得,故答案为.考点:余弦定理及等比数列的定义.16、0.4【答案解析】因为随机变量服从正态分布,利用正态曲线的对称性,即得解.【题目详解】因为随机变量服从正态分布所以正态曲线关于对