1、2023学年高考数学模拟测试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1要得到函数的图象,只需将函数图象上所有点的横坐标( )A伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度B伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移个单位长度C缩短到原来的倍(纵坐标不变),再将得到的图象向左平移个单位
2、长度D缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位长度2已知点、若点在函数的图象上,则使得的面积为的点的个数为( )ABCD3一个正三角形的三个顶点都在双曲线的右支上,且其中一个顶点在双曲线的右顶点,则实数的取值范围是( )ABCD4某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)为( )AB6CD5已知函数,若方程恰有两个不同实根,则正数m的取值范围为( )ABCD6已知命题:是“直线和直线互相垂直”的充要条件;命题:函数的最小值为4. 给出下列命题:;,其中真命题的个数为( )A1B2C3D47已知角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则( )A
3、BCD8过抛物线的焦点的直线与抛物线交于、两点,且,抛物线的准线与轴交于,的面积为,则( )ABCD9已知函数,若,则下列不等关系正确的是( )ABCD10设,点,设对一切都有不等式 成立,则正整数的最小值为( )ABCD11已知正四面体的内切球体积为v,外接球的体积为V,则( )A4B8C9D2712定义在上的函数与其导函数的图象如图所示,设为坐标原点,、四点的横坐标依次为、,则函数的单调递减区间是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图,的外接圆半径为,为边上一点,且,则的面积为_.14已知圆柱的两个底面的圆周在同一个球的球面上,圆柱的高和球半径均为2,则该圆
4、柱的底面半径为_.15实数,满足约束条件,则的最大值为_.16设等比数列的前项和为,若,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列满足:对一切成立.(1)求数列的通项公式;(2)求数列的前项和.18(12分)已知在平面直角坐标系中,椭圆的焦点为为椭圆上任意一点,且.(1)求椭圆的标准方程;(2)若直线交椭圆于两点,且满足(分别为直线的斜率),求的面积为时直线的方程.19(12分)已知椭圆:(),与轴负半轴交于,离心率.(1)求椭圆的方程;(2)设直线:与椭圆交于,两点,连接,并延长交直线于,两点,已知,求证:直线恒过定点,并求出定点坐标.20(12
5、分)椭圆:的左、右焦点分别是,离心率为,左、右顶点分别为,.过且垂直于轴的直线被椭圆截得的线段长为1.(1)求椭圆的标准方程;(2)经过点的直线与椭圆相交于不同的两点、(不与点、重合),直线与直线相交于点,求证:、三点共线.21(12分)如图,在正四棱锥中,为上的四等分点,即(1)证明:平面平面;(2)求平面与平面所成锐二面角的余弦值22(10分)已知函数,(1)当时,讨论函数的单调性;(2)若,当时,函数,求函数的最小值2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】分析:根据
6、三角函数的图象关系进行判断即可详解:将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到 再将得到的图象向左平移个单位长度得到 故选B点睛:本题主要考查三角函数的图象变换,结合和的关系是解决本题的关键2、C【答案解析】设出点的坐标,以为底结合的面积计算出点到直线的距离,利用点到直线的距离公式可得出关于的方程,求出方程的解,即可得出结论.【题目详解】设点的坐标为,直线的方程为,即,设点到直线的距离为,则,解得,另一方面,由点到直线的距离公式得,整理得或,解得或或.综上,满足条件的点共有三个故选:C.【答案点睛】本题考查三角形面积的计算,涉及点到直线的距离公式的应用,考查运算求解能力,属
7、于中等题3、D【答案解析】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,将其代入双曲线可解得【题目详解】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,将其代入双曲线方程得:,即,由得故选:【答案点睛】本题考查了双曲线的性质,意在考查学生对这些知识的理解掌握水平4、D【答案解析】根据几何体的三视图,该几何体是由正方体去掉三棱锥得到,根据正方体和三棱锥的体积公式可求解.【题目详解】如图,该几何体为正方体去掉三棱锥,所以该几何体的体积为:,故选:D【答案点睛】本题主要考查了空间几何体的三视图以及体积的求法,考查了空间想象力,属于
8、中档题.5、D【答案解析】当时,函数周期为,画出函数图像,如图所示,方程两个不同实根,即函数和有图像两个交点,计算,根据图像得到答案.【题目详解】当时,故函数周期为,画出函数图像,如图所示:方程,即,即函数和有两个交点.,故,.根据图像知:.故选:.【答案点睛】本题考查了函数的零点问题,确定函数周期画出函数图像是解题的关键.6、A【答案解析】先由两直线垂直的条件判断出命题p的真假,由基本不等式判断命题q的真假,从而得出p,q的非命题的真假,继而判断复合命题的真假,可得出选项.【题目详解】已知对于命题,由得,所以命题为假命题;关于命题,函数,当时,当即时,取等号,当时,函数没有最小值,所以命题为
9、假命题.所以和是真命题,所以为假命题,为假命题,为假命题,为真命题,所以真命题的个数为1个.故选:A.【答案点睛】本题考查直线的垂直的判定和基本不等式的应用,以及复合命题的真假的判断,注意运用基本不等式时,满足所需的条件,属于基础题.7、A【答案解析】由已知可得,根据二倍角公式即可求解.【题目详解】角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则,.故选:A.【答案点睛】本题考查三角函数定义、二倍角公式,考查计算求解能力,属于基础题.8、B【答案解析】设点、,并设直线的方程为,由得,将直线的方程代入韦达定理,求得,结合的面积求得的值,结合焦点弦长公式可求得.【题目详解】设点、,并设直线
10、的方程为,将直线的方程与抛物线方程联立,消去得,由韦达定理得,可得,抛物线的准线与轴交于,的面积为,解得,则抛物线的方程为,所以,.故选:B.【答案点睛】本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题.9、B【答案解析】利用函数的单调性得到的大小关系,再利用不等式的性质,即可得答案.【题目详解】在R上单调递增,且,.的符号无法判断,故与,与的大小不确定,对A,当时,故A错误;对C,当时,故C错误;对D,当时,故D错误;对B,对,则,故B正确.故选:B.【答案点睛】本题考查分段函数的单调性、不等式性质的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理
11、能力和运算求解能力,属于基础题.10、A【答案解析】先求得,再求得左边的范围,只需,利用单调性解得t的范围.【题目详解】由题意知sin,随n的增大而增大,,,即,又f(t)=在t上单增,f(2)= -10,正整数的最小值为3.【答案点睛】本题考查了数列的通项及求和问题,考查了数列的单调性及不等式的解法,考查了转化思想,属于中档题.11、D【答案解析】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,首先求出正四面体的体积,再利用等体法求出内切球的半径,在中,根据勾股定理求出外接球的半径,利用球的体积公式即可求解.【题目详解】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,则,设内
12、切球的半径为,内切球的球心为,则,解得:;设外接球的半径为,外接球的球心为,则或,在中,由勾股定理得:,解得, 故选:D【答案点睛】本题主要考查了多面体的内切球、外接球问题,考查了椎体的体积公式以及球的体积公式,需熟记几何体的体积公式,属于基础题.12、B【答案解析】先辨别出图象中实线部分为函数的图象,虚线部分为其导函数的图象,求出函数的导数为,由,得出,只需在图中找出满足不等式对应的的取值范围即可.【题目详解】若虚线部分为函数的图象,则该函数只有一个极值点,但其导函数图象(实线)与轴有三个交点,不合乎题意;若实线部分为函数的图象,则该函数有两个极值点,则其导函数图象(虚线)与轴恰好也只有两个
13、交点,合乎题意.对函数求导得,由得,由图象可知,满足不等式的的取值范围是,因此,函数的单调递减区间为.故选:B.【答案点睛】本题考查利用图象求函数的单调区间,同时也考查了利用图象辨别函数与其导函数的图象,考查推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】先由正弦定理得到,再在三角形ABD、ADC中分别由正弦定理进一步得到B=C,最后利用面积公式计算即可.【题目详解】依题意可得,由正弦定理得,即,由图可知是钝角,所以,在三角形ABD中,在三角形ADC中,由正弦定理得即,所以,故,故的面积为.故答案为:.【答案点睛】本题考查正弦定理解三角形,考查学生的基本
14、计算能力,要灵活运用正弦定理公式及三角形面积公式,本题属于中档题.14、【答案解析】由圆柱外接球的性质,即可求得结果.【题目详解】解:由于圆柱的高和球半径均为2,,则球心到圆柱底面的距离为1,设圆柱底面半径为,由已知有,即圆柱的底面半径为.故答案为:.【答案点睛】本题考查由圆柱的外接球的性质求圆柱底面半径,属于基础题.15、10【答案解析】画出可行域,根据目标函数截距可求.【题目详解】解:作出可行域如下:由得,平移直线,当经过点时,截距最小,最大解得的最大值为10故答案为:10【答案点睛】考查可行域的画法及目标函数最大值的求法,基础题.16、【答案解析】由题意,设等比数列的公比为,根据已知条件,列出方程组,求得的值,利用求和公式,即可求解【题目详解】由题意,设等比