1、初一数学,最值问题专题19 最值问题 阅读与思考 在实际生活与生产中,人们总想节省时间或费用,而取得最好的效果或最高效益,反映在数学问题上,就是求某个量的和、差、积、商的最大值和最小值,这类问题被称之为最值问题,在现阶段,解这类问题的相关知识与根本方法有:1、 通过枚举选取. 2、 利用完全平方式性质. 3、 运用不等式组逼近求解. 4、 借用几何中的不等量性质、定理等. 解答这类问题应当包括两个方面,一方面要说明不可能比某个值更大或更小,另一方面要举例说明可以到达这个值,前者需要详细说明,后者需要构造一个适宜的例子. 例题与求解 【例1】 假设c为正整数,且,那么的最小值是 . xxx市竞赛
2、试题 解题思路:条件中关于C的信息量最多,应突出C的作用,把a,b,d及待求式用c的代数式表示. 【例2】 实数a,b满足,那么的最小值是 A. B.0 C.1 D. ( 全国初中数学竞赛试题) 解题思路:对进行变形,利用完全平方公式的性质进行解题. 【例3】 如果正整数满足=,求的最大值. 解题思路:不妨设,由题中条件可知=1.结合题意进行分析. 【例4】 都为非负数,满足,记,求的最大值与最小值. 四川省竞赛试题解题思路:解题的关键是用含一个字母的代数式表示. 【例5】 某工程车从仓库上水泥电线杆运送到离仓库恰为1000米的公路边栽立,要求沿公路的一边向前每隔100米栽立电线杆一根,工程车
3、每次之多只能运送电线杆4根,要求完成运送18根的任务,并返回仓库,假设工程车每行驶1千米耗油m升在这里耗油量的多少只考虑与行驶的路程有关,其他因素不计.每升汽油n元,求完成此项任务最低的耗油费用. 湖北省竞赛试题解题思路:要使耗油费用最低,应当使运送次数尽可能少,最少需运送5次,而5次又有不同运送方法,求出每种运送方法的行驶路程,比拟得出最低的耗油费用. 【例6】 直角三角形的两条直角边长分别为5和12,斜边长为13,P是三角形内或边界上的一点,P到三边的距离分别为,求+的最大值和最小值,并求当+取最大值和最小值时,P点的位置. “创新杯邀请赛试题解题思路:连接P点与三角形各顶点,利用三角形的
4、面积公式来解. 能力训练 A 级 1.社a,b,c满足,那么代数式的最大值是 . 全国初中数学联赛试题2.在满足的条件下,能到达的最大值是 . “希望杯邀请赛试题 3.锐角三角形ABC的三个内角A,B,C满足ABC.用表示A-B,B-C,以及90-A中的最小值,那么的最大值是 . 全国初中数学联赛试题4.有理数a,b,c满足abc,且a+b+c=0,.那么的取值范围是 . 数学夏令营竞赛试题5.在式子中,代入不同的x值,得到对应的值,在这些对应的值中,最小的值是 . A.1 B.2 C.3 D.4 6.假设a,b,c,d是整数,b是正整数,且满足,那么的最大值是 . A.-1 B.-5 C.0
5、 D.1 (全国初中数学联赛试题) 7.那么代数式的最小值是 . A.75 B.80 C.100 D.105 (江苏省竞赛试题) 8.,均为非负数,且满足=30, ,又设,那么M的最小值与最大值分别为 . A.110,120 B.120,130 C.130,140 D.140,150 9. 非负实数,满足,记.求的最大值和最小值 “希望杯邀请赛试题 10.某童装厂现有甲种布料38米,乙钟布料26米,现方案用这两种布料生产L,M两种型号的童装共50套,做一套L型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元;做一套M型号的童装需用甲种布料0.9米,乙种布料0.2米,可获利30元,试问该厂生产的这批童装,当L型号的童装为多少套是,能使该厂获得利润最大?最大利润为多少? 江西省无锡市中考试题