1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数满足,且,则不等式的解集为( )ABCD2函数(其中是自然对数的底数)的大致图像为( )ABCD3已知向量,设函数,则下列关于函数的性质的描述正确的是A关于直线对称B关于点对称C周期为D在上是增函数4用1,2,3,4,5组成不含重复
2、数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是( )A48B60C72D1205已知函数,若恒成立,则满足条件的的个数为( )A0B1C2D36把函数的图象向右平移个单位长度,得到函数的图象,若函数是偶函数,则实数的最小值是( )ABCD7已知某几何体的三视图如图所示,则该几何体外接球的表面积为( )ABCD8已知,且,则的值为( )ABCD9已知定义在上函数的图象关于原点对称,且,若,则( )A0B1C673D67410已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为( )ABCD11已知函数满足:当时,且
3、对任意,都有,则( )A0B1C-1D12如图所示,三国时代数学家在周脾算经中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为,若向弦图内随机抛掷200颗米粒(大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为( )A20B27C54D64二、填空题:本题共4小题,每小题5分,共20分。13如图,在平面四边形中,则_14 (xy)(2xy)5的展开式中x3y3的系数为_.15在ABC中,a3,B2A,则cosA_16已知集合,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设的内角的对边分
4、别为,已知.(1)求;(2)若为锐角三角形,求的取值范围.18(12分)某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败晋级成功晋级失败合计男16女50合计(1)求图中的值;(2)根据已知条件完成下面列联表,并判断能否有的把握认为“晋级成功”与性别有关?(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望(参考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.02419(
5、12分)选修4-5:不等式选讲已知函数()解不等式;()对及,不等式恒成立,求实数的取值范围.20(12分)设,.(1)若的最小值为4,求的值;(2)若,证明:或.21(12分)在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位已知曲线C的极坐标方程为2cos ,直线l的参数方程为 (t为参数,为直线的倾斜角)(1)写出直线l的普通方程和曲线C的直角坐标方程;(2)若直线l与曲线C有唯一的公共点,求角的大小22(10分)已知函数.(1)若函数不存在单调递减区间,求实数的取值范围;(2)若函数的两个极值点为,求的最小值.2023学年模拟测试卷参考答案(
6、含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】构造函数,利用导数研究函数的单调性,即可得到结论.【题目详解】设,则函数的导数,,即函数为减函数,,则不等式等价为,则不等式的解集为,即的解为,由得或,解得或,故不等式的解集为.故选:.【答案点睛】本题主要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.2、D【答案解析】 由题意得,函数点定义域为且,所以定义域关于原点对称, 且,所以函数为奇函数,图象关于原点对称, 故选D.3、D【答案解析】当时,f(x)不关于直线对
7、称;当时, ,f(x)关于点对称;f(x)得周期,当时, ,f(x)在上是增函数本题选择D选项.4、A【答案解析】对数字分类讨论,结合数字中有且仅有两个数字相邻,利用分类计数原理,即可得到结论【题目详解】数字出现在第位时,数字中相邻的数字出现在第位或者位,共有个数字出现在第位时,同理也有个数字出现在第位时,数字中相邻的数字出现在第位或者位,共有个故满足条件的不同的五位数的个数是个故选【答案点睛】本题主要考查了排列,组合及简单计数问题,解题的关键是对数字分类讨论,属于基础题。5、C【答案解析】由不等式恒成立问题分类讨论:当,当,当,考查方程的解的个数,综合得解【题目详解】当时,满足题意,当时,故
8、不恒成立,当时,设,令,得,得,下面考查方程的解的个数,设(a),则(a)由导数的应用可得:(a)在为减函数,在,为增函数,则(a),即有一解,又,均为增函数,所以存在1个使得成立,综合得:满足条件的的个数是2个,故选:【答案点睛】本题考查了不等式恒成立问题及利用导数研究函数的解得个数,重点考查了分类讨论的数学思想方法,属难度较大的题型.6、A【答案解析】先求出的解析式,再求出的解析式,根据三角函数图象的对称性可求实数满足的等式,从而可求其最小值.【题目详解】的图象向右平移个单位长度,所得图象对应的函数解析式为,故.令,解得,.因为为偶函数,故直线为其图象的对称轴,令,故,因为,故,当时,.故
9、选:A.【答案点睛】本题考查三角函数的图象变换以及三角函数的图象性质,注意平移变换是对自变量做加减,比如把的图象向右平移1个单位后,得到的图象对应的解析式为,另外,如果为正弦型函数图象的对称轴,则有,本题属于中档题7、C【答案解析】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球的半径,即可求解球的表面积.【题目详解】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,如图:由底面边长可知,底面三角形的顶角为,由正弦定理可得
10、,解得, 三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,所以,该几何体外接球的表面积为:.故选:C【答案点睛】本题考查了多面体的内切球与外接球问题,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题.8、A【答案解析】由及得到、,进一步得到,再利用两角差的正切公式计算即可.【题目详解】因为,所以,又,所以,所以.故选:A.【答案点睛】本题考查三角函数诱导公式、二倍角公式以及两角差的正切公式的应用,考查学生的基本计算能力,是一道基础题.9、B【答案解析】由题知为奇函数,且可得函数的周期为3,分别求出知函数在一个周期内的和是0,利用函数周期性对所求式子进行化简可得.【题目详解】
11、因为为奇函数,故;因为,故,可知函数的周期为3;在中,令,故,故函数在一个周期内的函数值和为0,故.故选:B.【答案点睛】本题考查函数奇偶性与周期性综合问题. 其解题思路:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解10、C【答案解析】试题分析:设的交点为,连接,则为所成的角或其补角;设正四棱锥的棱长为,则,所以,故C为正确答案考点:异面直线所成的角11、C【答案解析】由题意可知,代入函数表达式即可得解.【题目详解】由可知函数是周期为4的函数,.故选:C.【答案点睛】本题考查了分段函数和函数周期的应用,属于
12、基础题.12、B【答案解析】设大正方体的边长为,从而求得小正方体的边长为,设落在小正方形内的米粒数大约为,利用概率模拟列方程即可求解。【题目详解】设大正方体的边长为,则小正方体的边长为,设落在小正方形内的米粒数大约为,则,解得:故选:B【答案点睛】本题主要考查了概率模拟的应用,考查计算能力,属于基础题。二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由题意得,然后根据数量积的运算律求解即可【题目详解】由题意得,【答案点睛】突破本题的关键是抓住题中所给图形的特点,利用平面向量基本定理和向量的加减运算,将所给向量统一用表示,然后再根据数量积的运算律求解,这样解题方便快捷14、40
13、【答案解析】先求出的展开式的通项,再求出即得解.【题目详解】设的展开式的通项为,令r=3,则,令r=2,则,所以展开式中含x3y3的项为.所以x3y3的系数为40.故答案为:40【答案点睛】本题主要考查二项式定理求指定项的系数,意在考查学生对这些知识的理解掌握水平.15、【答案解析】由已知利用正弦定理,二倍角的正弦函数公式即可计算求值得解【题目详解】解:a3,B2A,由正弦定理可得:,cosA故答案为【答案点睛】本题主要考查了正弦定理,二倍角的正弦函数公式在解三角形中的应用,属于基础题16、【答案解析】利用交集定义直接求解【题目详解】解:集合奇数,偶数,故答案为:【答案点睛】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【答案解析】(1)利用正弦定理化简已知条件,由此求得的值,进而求得的大小.(2)利用正弦定理和两角差的正弦公式,求得的表达式,进而求得的取值范围.【题目详解】(1)由题设知,即,所以,即,又所以.(2)由题设知,即,又为锐角三角形,所以,即所以,即,所以的取值范围是.【答案点睛】本小题主要考查利用正弦定理解三角形,考查利用角的范围,求边的比值的取值范围,属于中档题.18、 (1) ;(2)列联表见解析,有超过的把握认为“晋级成功”与