收藏 分享(赏)

2023届浙江省杭州市五校联盟高三第三次测评数学试卷(含解析).doc

上传人:la****1 文档编号:19821 上传时间:2023-01-06 格式:DOC 页数:20 大小:3.14MB
下载 相关 举报
2023届浙江省杭州市五校联盟高三第三次测评数学试卷(含解析).doc_第1页
第1页 / 共20页
2023届浙江省杭州市五校联盟高三第三次测评数学试卷(含解析).doc_第2页
第2页 / 共20页
2023届浙江省杭州市五校联盟高三第三次测评数学试卷(含解析).doc_第3页
第3页 / 共20页
2023届浙江省杭州市五校联盟高三第三次测评数学试卷(含解析).doc_第4页
第4页 / 共20页
2023届浙江省杭州市五校联盟高三第三次测评数学试卷(含解析).doc_第5页
第5页 / 共20页
2023届浙江省杭州市五校联盟高三第三次测评数学试卷(含解析).doc_第6页
第6页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若函数的图象上两点,关于直线的对称点在的图象上,则的取值范围是( )ABCD2某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( )A收入最高值与收入最低值的比是B结余最高的月份是月份C与月份的收入的变化率与至月份的收入

2、的变化率相同D前个月的平均收入为万元3如图,在中,点M是边的中点,将沿着AM翻折成,且点不在平面内,点是线段上一点.若二面角与二面角的平面角相等,则直线经过的( )A重心B垂心C内心D外心4已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为( )A2B5CD5已知等差数列an,则“a2a1”是“数列an为单调递增数列”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件6如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为( )ABCD7已知是第二象限的角,则( )ABC

3、D8在等差数列中,若(),则数列的最大值是( )ABC1D39已知函数,则在上不单调的一个充分不必要条件可以是( )ABC或D10集合的子集的个数是( )A2B3C4D811设i为虚数单位,若复数,则复数z等于( )ABCD012函数,则“的图象关于轴对称”是“是奇函数”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13已知,满足约束条件,则的最小值为_14如图,在复平面内,复数,对应的向量分别是,则_.15在的展开式中,常数项为_.(用数字作答)16的展开式中的系数为_(用具体数据作答).三、解答题:共70分。解答应写

4、出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥中,侧棱底面,是棱中点.(1)已知点在棱上,且平面平面,试确定点的位置并说明理由;(2)设点是线段上的动点,当点在何处时,直线与平面所成角最大?并求最大角的正弦值.18(12分)随着科技的发展,网络已逐渐融入了人们的生活网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)经常网购偶尔或不用网购合计男性50100女性70100合计(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性

5、别有关?(2)现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差参考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819(12分)在平面直角坐标系中,已知点,曲线:(为参数)以原点为极点,轴正半轴建立极坐标系,直线的极坐标方程为.()判断点与直线的位置关系并说明理由;()设直线与曲线的两个交点分别为,求的值.2

6、0(12分)已知函数(,),且对任意,都有.()用含的表达式表示;()若存在两个极值点,且,求出的取值范围,并证明;()在()的条件下,判断零点的个数,并说明理由.21(12分)已知函数.(1)求不等式的解集;(2)若正数、满足,求证:.22(10分)如图,在矩形中,点是边上一点,且,点是的中点,将沿着折起,使点运动到点处,且满足.(1)证明:平面;(2)求二面角的余弦值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】由题可知,可转化为曲线与有两个公共点,可转化为方程有两解,构

7、造函数,利用导数研究函数单调性,分析即得解【题目详解】函数的图象上两点,关于直线的对称点在上,即曲线与有两个公共点,即方程有两解,即有两解,令,则,则当时,;当时,故时取得极大值,也即为最大值,当时,;当时,所以满足条件故选:D【答案点睛】本题考查了利用导数研究函数的零点,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.2、D【答案解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误综上,故选3、A【答案解析】根据题意到两个平面的距离相等

8、,根据等体积法得到,得到答案.【题目详解】二面角与二面角的平面角相等,故到两个平面的距离相等.故,即,两三棱锥高相等,故,故,故为中点.故选:.【答案点睛】本题考查了二面角,等体积法,意在考查学生的计算能力和空间想象能力.4、D【答案解析】根据三视图还原出几何体,找到最大面,再求面积.【题目详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥.,故最大面的面积为.选D.【答案点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.5、C【答案解析】试题分析:根据充分条件和必要条件的定义进行判断即可解:在等差数列an中,若a2a1,则d

9、0,即数列an为单调递增数列,若数列an为单调递增数列,则a2a1,成立,即“a2a1”是“数列an为单调递增数列”充分必要条件,故选C考点:必要条件、充分条件与充要条件的判断6、C【答案解析】根据三视图还原为几何体,结合组合体的结构特征求解表面积.【题目详解】由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4,所以该几何体的表面积,故选C.【答案点睛】本题主要考查三视图的识别,利用三视图还原成几何体是求解关键,侧重考查直观想象和数学运算的核心素养.7、D【答案解析】利用诱导公式和同角三角函数的基本关

10、系求出,再利用二倍角的正弦公式代入求解即可.【题目详解】因为,由诱导公式可得,即,因为,所以,由二倍角的正弦公式可得,所以.故选:D【答案点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.8、D【答案解析】在等差数列中,利用已知可求得通项公式,进而,借助函数的的单调性可知,当时, 取最大即可求得结果.【题目详解】因为,所以,即,又,所以公差,所以,即,因为函数,在时,单调递减,且;在时,单调递减,且.所以数列的最大值是,且,所以数列的最大值是3.故选:D.【答案点睛】本题考查等差数列的通项公式,考查数列与函数的关系,借助函数单调

11、性研究数列最值问题,难度较易.9、D【答案解析】先求函数在上不单调的充要条件,即在上有解,即可得出结论.【题目详解】,若在上不单调,令,则函数对称轴方程为在区间上有零点(可以用二分法求得).当时,显然不成立;当时,只需或,解得或.故选:D.【答案点睛】本题考查含参数的函数的单调性及充分不必要条件,要注意二次函数零点的求法,属于中档题.10、D【答案解析】先确定集合中元素的个数,再得子集个数【题目详解】由题意,有三个元素,其子集有8个故选:D【答案点睛】本题考查子集的个数问题,含有个元素的集合其子集有个,其中真子集有个11、B【答案解析】根据复数除法的运算法则,即可求解.【题目详解】.故选:B.

12、【答案点睛】本题考查复数的代数运算,属于基础题.12、B【答案解析】根据函数奇偶性的性质,结合充分条件和必要条件的定义进行判断即可【题目详解】设,若函数是上的奇函数,则,所以,函数的图象关于轴对称.所以,“是奇函数”“的图象关于轴对称”;若函数是上的偶函数,则,所以,函数的图象关于轴对称.所以,“的图象关于轴对称”“是奇函数”.因此,“的图象关于轴对称”是“是奇函数”的必要不充分条件.故选:B.【答案点睛】本题主要考查充分条件和必要条件的判断,结合函数奇偶性的性质判断是解决本题的关键,考查推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、2【答案解析】作出可行域,平移

13、基准直线到处,求得的最小值.【题目详解】画出可行域如下图所示,由图可知平移基准直线到处时,取得最小值为.故答案为:【答案点睛】本小题主要考查线性规划求最值,考查数形结合的数学思想方法,属于基础题.14、【答案解析】试题分析:由坐标系可知考点:复数运算15、【答案解析】的展开式的通项为,取计算得到答案.【题目详解】的展开式的通项为:,取得到常数项.故答案为:.【答案点睛】本题考查了二项式定理,意在考查学生的计算能力.16、【答案解析】利用二项展开式的通项公式可求的系数.【题目详解】的展开式的通项公式为,令,故,故的系数为.故答案为:.【答案点睛】本题考查二项展开式中指定项的系数,注意利用通项公式

14、来计算,本题属于容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)为中点,理由见解析;(2)当点在线段靠近的三等分点时,直线与平面所成角最大,最大角的正弦值.【答案解析】(1)为中点,可利用中位线与平行四边形性质证明,从而证明平面平面;(2)以A为原点,分别以,所在直线为、轴建立空间直角坐标系,利用向量法求出当点在线段靠近的三等分点时,直线与平面所成角最大,并可求出最大角的正弦值.【题目详解】(1)为中点,证明如下:分别为中点,又平面平面平面 又,且四边形为平行四边形,同理,平面,又 平面平面(2)以A为原点,分别以,所在直线为、轴建立空间直角坐标系则, 设直线与平面所成角为,则取平面的法向量

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 实用范文 > 工作计划

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2