1、2023学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,则的值等于( )A2018B1009C1010D20202已知正方体的棱长为,分别是棱,的中点,给出下列四个命题: ; 直线与直线所成角为; 过,三点的平面截该正方体
2、所得的截面为六边形; 三棱锥的体积为.其中,正确命题的个数为( )ABCD3某校8位学生的本次月考成绩恰好都比上一次的月考成绩高出50分,则以该8位学生这两次的月考成绩各自组成样本,则这两个样本不变的数字特征是( )A方差B中位数C众数D平均数4若函数,在区间上任取三个实数,均存在以,为边长的三角形,则实数的取值范围是( )ABCD5运行如图所示的程序框图,若输出的的值为99,则判断框中可以填( )ABCD6某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体中最长的棱长为( )ABC1D7已知变量x,y间存在线性相关关系,其数据如下表,回归直线方程为,则表
3、中数据m的值为( )变量x0123变量y35.57A0.9B0.85C0.75D0.58半径为2的球内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为( )ABCD9某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为( )A100B1000C90D9010正项等比数列中的、是函数的极值点,则( )AB1CD211若与互为共轭复数,则( )A0B3C1D412设是虚数单位,若复数,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13变量满足约束条件,则目标函数的最大值是_14三对父子去参加亲
4、子活动,坐在如图所示的6个位置上,有且仅有一对父子是相邻而坐的坐法有_种(比如:B与D、B与C是相邻的,A与D、C与D是不相邻的).15复数(其中i为虚数单位)的共轭复数为_.16已知双曲线(a0,b0)的一条渐近线方程为,则该双曲线的离心率为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,射线的极坐标方程为,射线的极坐标方程为.()写出曲线的极坐标方程,并指出是何种曲线;()若射线与曲线交于两点,射线与曲线交于两点,求面积的取值范围.18(12分)的内角,的对边分别为,
5、已知的面积为.(1)求;(2)若,求的周长.19(12分)已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)过点的直线交椭圆于、两点,若,在线段上取点,使,求证:点在定直线上.20(12分)为贯彻十九大报告中“要提供更多优质生态产品以满足人民日益增长的优美生态环境需要”的要求,某生物小组通过抽样检测植物高度的方法来监测培育的某种植物的生长情况现分别从、三块试验田中各随机抽取株植物测量高度,数据如下表(单位:厘米): 组组组假设所有植株的生长情况相互独立从、三组各随机选株,组选出的植株记为甲,组选出的植株记为乙,组选出的植株记为丙(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概
6、率;(3)表格中所有数据的平均数记为从、三块试验田中分别再随机抽取株该种植物,它们的高度依次是、(单位:厘米)这个新数据与表格中的所有数据构成的新样本的平均数记为,试比较和的大小(结论不要求证明)21(12分)在数列中,已知,且,.(1)求数列的通项公式;(2)设,数列的前项和为,证明:.22(10分)对于非负整数集合(非空),若对任意,或者,或者,则称为一个好集合以下记为的元素个数(1)给出所有的元素均小于的好集合(给出结论即可)(2)求出所有满足的好集合(同时说明理由)(3)若好集合满足,求证:中存在元素,使得中所有元素均为的整数倍2023学年模拟测试卷参考答案(含详细解析)一、选择题:本
7、题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】首先,根据二倍角公式和辅助角公式化简函数解析式,根据所求函数的周期性,得到其周期为4,然后借助于三角函数的周期性确定其值即可【题目详解】解: ,的周期为, ,故选:C【答案点睛】本题重点考查了三角函数的图象与性质、三角恒等变换等知识,掌握辅助角公式化简函数解析式是解题的关键,属于中档题2、C【答案解析】画出几何体的图形,然后转化判断四个命题的真假即可【题目详解】如图;连接相关点的线段,为的中点,连接,因为是中点,可知,可知平面,即可证明,所以正确;直线与直线所成角就是直线与直线所成角为;正
8、确;过,三点的平面截该正方体所得的截面为五边形;如图:是五边形所以不正确;如图:三棱锥的体积为:由条件易知F是GM中点,所以,而,所以三棱锥的体积为,正确;故选:【答案点睛】本题考查命题的真假的判断与应用,涉及空间几何体的体积,直线与平面的位置关系的应用,平面的基本性质,是中档题3、A【答案解析】通过方差公式分析可知方差没有改变,中位数、众数和平均数都发生了改变.【题目详解】由题可知,中位数和众数、平均数都有变化.本次和上次的月考成绩相比,成绩和平均数都增加了50,所以没有改变,根据方差公式可知方差不变.故选:A【答案点睛】本题主要考查样本的数字特征,意在考查学生对这些知识的理解掌握水平.4、
9、D【答案解析】利用导数求得在区间上的最大值和最小,根据三角形两边的和大于第三边列不等式,由此求得的取值范围.【题目详解】的定义域为,所以在上递减,在上递增,在处取得极小值也即是最小值,所以在区间上的最大值为.要使在区间上任取三个实数,均存在以,为边长的三角形,则需恒成立,且,也即,也即当、时,成立,即,且,解得.所以的取值范围是.故选:D【答案点睛】本小题主要考查利用导数研究函数的最值,考查恒成立问题的求解,属于中档题.5、C【答案解析】模拟执行程序框图,即可容易求得结果.【题目详解】运行该程序:第一次,;第二次,;第三次,;第九十八次,;第九十九次,此时要输出的值为99.此时.故选:C.【答
10、案点睛】本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题.6、B【答案解析】首先由三视图还原几何体,进一步求出几何体的棱长【题目详解】解:根据三视图还原几何体如图所示,所以,该四棱锥体的最长的棱长为故选:B【答案点睛】本题主要考查由三视图还原几何体,考查运算能力和推理能力,属于基础题7、A【答案解析】计算,代入回归方程可得【题目详解】由题意,解得故选:A.【答案点睛】本题考查线性回归直线方程,解题关键是掌握性质:线性回归直线一定过中心点8、B【答案解析】设正三棱柱上下底面的中心分别为,底面边长与高分别为,利用,可得,进一步得到侧面积,再利用基本不等式求最值
11、即可.【题目详解】如图所示.设正三棱柱上下底面的中心分别为,底面边长与高分别为,则,在中,化为,当且仅当时取等号,此时.故选:B.【答案点睛】本题考查正三棱柱与球的切接问题,涉及到基本不等式求最值,考查学生的计算能力,是一道中档题.9、A【答案解析】利用频率分布直方图得到支出在的同学的频率,再结合支出在(单位:元)的同学有34人,即得解【题目详解】由题意,支出在(单位:元)的同学有34人由频率分布直方图可知,支出在的同学的频率为故选:A【答案点睛】本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.10、B【答案解析】根据可导函数在极值点处的导数值为,得出
12、,再由等比数列的性质可得.【题目详解】解:依题意、是函数的极值点,也就是的两个根又是正项等比数列,所以.故选:B【答案点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.11、C【答案解析】计算,由共轭复数的概念解得即可.【题目详解】,又由共轭复数概念得:,.故选:C【答案点睛】本题主要考查了复数的运算,共轭复数的概念.12、A【答案解析】结合复数的除法运算和模长公式求解即可【题目详解】复数,则,故选:A.【答案点睛】本题考查复数的除法、模长、平方运算,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、5【答案解析】分析:画出可行域,平移直线,当直线经过时,可得有最大值.详
13、解: 画出束条件表示的可行性,如图,由可得,可得,目标函数变形为,平移直线,当直线经过时,可得有最大值,故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的定点就是最优解);(3)将最优解坐标代入目标函数求出最值.14、192【答案解析】根据题意,分步进行分析:,在三对父子中任选1对,安排在相邻的位置上,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,由分步计数原理计算可得答案【题目详解】根据题意,分步进行分析:,在三对父子中任选1对,有3种选法,由图可得相邻的位置有4种情况,将选出的1对父子安排在相邻的位置,有种安排方法;,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,有种安排方法,则有且仅有一对父子是相邻而坐的坐法种;故答案为:【答案点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题15、【答案解析】利用复数的乘法运算求出,再利用共轭复数的概念即可求解.【题目详解】由,则.故答案为:【答案点睛】本题考查了复数的四则运算以及共轭复数的概念,属于基础题.16、【答案