1、2023学年高考数学模拟测试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求
2、的。1已知数列的首项,且,其中,下列叙述正确的是( )A若是等差数列,则一定有B若是等比数列,则一定有C若不是等差数列,则一定有 D若不是等比数列,则一定有2在中,已知,为线段上的一点,且,则的最小值为( )ABCD3已知,是两平面,l,m,n是三条不同的直线,则不正确命题是( )A若m,n/,则mnB若m/,n/,则m/nC若l,l/,则D若/,l,且l/,则l/4己知全集为实数集R,集合A=x|x2 +2x-80,B=x|log2xb0)与直线交于A,B两点,焦点F(0,-c),其中c为半焦距,若ABF是直角三角形,则该椭圆的离心率为( )ABCD10已知,则不等式的解集是( )ABCD1
3、1高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,已知函数(),则函数的值域为( )ABCD12本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有( )A72种B144种C288种D360种二、填空题:本题共4小题,每小题5分,共20分。13在中,点是边的中点,则_,_.14若复数满足,其中为虚数单位,则的共轭复数在复平面内对应点的坐标为_15如图,在平行四边形中,,则的值为_.16在正
4、方体中,为棱的中点,是棱上的点,且,则异面直线与所成角的余弦值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设不等式的解集为M,.(1)证明:;(2)比较与的大小,并说明理由.18(12分)已知数列的前项和和通项满足.(1)求数列的通项公式;(2)已知数列中,求数列的前项和.19(12分)已知函数.(1)求不等式的解集;(2)设的最小值为,正数,满足,证明:.20(12分)若正数满足,求的最小值.21(12分)在平面直角坐标系中,已知椭圆:()的左、右焦点分别为、,且点、与椭圆的上顶点构成边长为2的等边三角形(1)求椭圆的方程;(2)已知直线与椭圆相切于点,且
5、分别与直线和直线相交于点、试判断是否为定值,并说明理由22(10分)如图,在四棱锥PABCD中,PA平面ABCD,ABCBAD90,ADAP4,ABBC2,M为PC的中点(1)求异面直线AP,BM所成角的余弦值;(2)点N在线段AD上,且AN,若直线MN与平面PBC所成角的正弦值为,求的值2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】根据等差数列和等比数列的定义进行判断即可.【题目详解】A:当时,显然符合是等差数列,但是此时不成立,故本说法不正确;B:当时,显然符合是等比数列,
6、但是此时不成立,故本说法不正确;C:当时,因此有常数,因此是等差数列,因此当不是等差数列时,一定有,故本说法正确; D:当 时,若时,显然数列是等比数列,故本说法不正确.故选:C【答案点睛】本题考查了等差数列和等比数列的定义,考查了推理论证能力,属于基础题.2、A【答案解析】在中,设,结合三角形的内角和及和角的正弦公式化简可求,可得,再由已知条件求得,考虑建立以所在的直线为轴,以所在的直线为轴建立直角坐标系,根据已知条件结合向量的坐标运算求得,然后利用基本不等式可求得的最小值.【题目详解】在中,设,即,即,即,又,则,所以,解得,.以所在的直线为轴,以所在的直线为轴建立如下图所示的平面直角坐标
7、系,则、,为线段上的一点,则存在实数使得,设,则,消去得,所以,当且仅当时,等号成立,因此,的最小值为.故选:A.【答案点睛】本题是一道构思非常巧妙的试题,综合考查了三角形的内角和定理、两角和的正弦公式及基本不等式求解最值问题,解题的关键是理解是一个单位向量,从而可用、表示,建立、与参数的关系,解决本题的第二个关键点在于由,发现为定值,从而考虑利用基本不等式求解最小值,考查计算能力,属于难题.3、B【答案解析】根据线面平行、线面垂直和空间角的知识,判断A选项的正确性.由线面平行有关知识判断B选项的正确性.根据面面垂直的判定定理,判断C选项的正确性.根据面面平行的性质判断D选项的正确性.【题目详
8、解】A若,则在中存在一条直线,使得,则,又,那么,故正确;B若,则或相交或异面,故不正确;C若,则存在,使,又,则,故正确D若,且,则或,又由,故正确故选:B【答案点睛】本小题主要考查空间线线、线面和面面有关命题真假性的判断,属于基础题.4、D【答案解析】求解一元二次不等式化简A,求解对数不等式化简B,然后利用补集与交集的运算得答案.【题目详解】解:由x2 +2x-80,得x-4或x2,A=x|x2 +2x-80x| x-4或x2,由log2x1,x0,得0x2,B=x|log2x1 x |0x2,则,.故选:D.【答案点睛】本题考查了交、并、补集的混合运算,考查了对数不等式,二次不等式的求法
9、,是基础题.5、A【答案解析】进行交集的运算即可【题目详解】,1,2,1,故选:【答案点睛】本题主要考查了列举法、描述法的定义,考查了交集的定义及运算,考查了计算能力,属于基础题6、B【答案解析】由数量积的定义可得,为实数,则由可得,根据共线的性质,可判断;再根据判断,由等价法即可判断两命题的关系.【题目详解】若成立,则,则向量与的方向相同,且,从而,所以;若,则向量与的方向相同,且,从而,所以.所以“”为“”的充分必要条件.故选:B【答案点睛】本题考查充分条件和必要条件的判定,考查相等向量的判定,考查向量的模、数量积的应用.7、A【答案解析】分别判断命题和的真假性,然后根据含有逻辑联结词命题
10、的真假性判断出正确选项.【题目详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题. 、都是假命题.故选:A【答案点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.8、A【答案解析】根据题目所给的步骤进行计算,由此求得的值.【题目详解】依题意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故选:A【答案点睛】本小题主要考查合情推理,考查中国古代数学文化,属于基础题.9、A【答案解析】联立直线与椭圆方程求出交点A,B两点,利用平面向量垂直的坐标表示得到关于的关系式
11、,解方程求解即可.【题目详解】联立方程,解方程可得或,不妨设A(0,a),B(-b,0),由题意可知,=0,因为,由平面向量垂直的坐标表示可得, 因为,所以a2-c2=ac,两边同时除以可得,解得e=或(舍去),所以该椭圆的离心率为.故选:A【答案点睛】本题考查椭圆方程及其性质、离心率的求解、平面向量垂直的坐标表示;考查运算求解能力和知识迁移能力;利用平面向量垂直的坐标表示得到关于的关系式是求解本题的关键;属于中档题、常考题型.10、A【答案解析】构造函数,通过分析的单调性和对称性,求得不等式的解集.【题目详解】构造函数,是单调递增函数,且向左移动一个单位得到,的定义域为,且,所以为奇函数,图
12、像关于原点对称,所以图像关于对称. 不等式等价于,等价于,注意到,结合图像关于对称和单调递增可知.所以不等式的解集是.故选:A【答案点睛】本小题主要考查根据函数的单调性和对称性解不等式,属于中档题.11、B【答案解析】利用换元法化简解析式为二次函数的形式,根据二次函数的性质求得的取值范围,由此求得的值域.【题目详解】因为(),所以,令(),则(),函数的对称轴方程为,所以,所以,所以的值域为.故选:B【答案点睛】本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识.12、B【答案解析】利用分步计数原理结合排列求解即可【题目详解】第一步排语文,英语,化学,生物4种,且化学排在生物前面,有种排法;第二步将数学和物理插入前4科除最后位置外的4个空挡中的2个,有种排法,所以不同的排表方法共有种.选.【答案点睛】本题考查排列的应用,不相邻采用插空法求解,准确分步是关键,是基础题二、填空题:本题共4小题,每小题5分,共20分。13、 2 【答案解析】根据正弦定理直接求出,利用三角形的边表示向量,然后利用向量的数量积求解即可.【题目详解】中,可得因为点是边的中点,所以故答案为:;.【答案点睛】本题主要考查了三角形的解