收藏 分享(赏)

2023届韶关市重点中学高三二诊模拟考试数学试卷(含解析).doc

上传人:g****t 文档编号:20051 上传时间:2023-01-06 格式:DOC 页数:20 大小:1.65MB
下载 相关 举报
2023届韶关市重点中学高三二诊模拟考试数学试卷(含解析).doc_第1页
第1页 / 共20页
2023届韶关市重点中学高三二诊模拟考试数学试卷(含解析).doc_第2页
第2页 / 共20页
2023届韶关市重点中学高三二诊模拟考试数学试卷(含解析).doc_第3页
第3页 / 共20页
2023届韶关市重点中学高三二诊模拟考试数学试卷(含解析).doc_第4页
第4页 / 共20页
2023届韶关市重点中学高三二诊模拟考试数学试卷(含解析).doc_第5页
第5页 / 共20页
2023届韶关市重点中学高三二诊模拟考试数学试卷(含解析).doc_第6页
第6页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则集合真子集的个数为( )A3B4C7D82若为纯虚数,则z( )AB6iCD203为研究语文成绩和英语成绩

2、之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线近似地刻画其相关关系,根据图形,以下结论最有可能成立的是()A线性相关关系较强,b的值为1.25B线性相关关系较强,b的值为0.83C线性相关关系较强,b的值为0.87D线性相关关系太弱,无研究价值4明代数学家程大位(15331606年),有感于当时筹算方法的不便,用其毕生心血写出算法统宗,可谓集成计算的鼻祖如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题执行该程序框图,若输出的的值为,则输入的的值为( )ABCD5周易是我国古代典籍,用“卦”描述了天地世间万象变化如图是一个八卦图,包含乾、

3、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻)若从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为( )ABCD6总体由编号01,,02,19,20的20个个体组成利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为7816657208026314070243699728019832049234493582003623486969387481A08B07C02D017定义在上的偶函数,对,且,有成立,已知,则,的大小关系为( )ABCD8已知,那么是的( )A充分

4、不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9设双曲线的一条渐近线为,且一个焦点与抛物线的焦点相同,则此双曲线的方程为( )ABCD10函数的一个零点在区间内,则实数a的取值范围是( )ABCD11函数()的图像可以是( )ABCD12在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在x轴上,且=, 那么椭圆的方程是 14对于任意的正数,不等式恒成立,则的最大值为_.15如图,在复平面内,复数,对应的向量分别是

5、,则_.16已知三棱锥,是边长为4的正三角形,分别是、的中点,为棱上一动点(点除外),若异面直线与所成的角为,且,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)数列满足.(1)求数列的通项公式;(2)设,为的前n项和,求证:.18(12分)某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败晋级成功晋级失败合计男16女50合计(1)求图中的值;(2)根据已知条件完成下面列联表,并判断能否有的把握认为“晋级成功”与性别有关?(3)将频率视为概率,从本次考试的所有人员中,随

6、机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望(参考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.02419(12分)11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.(1)经过1轮投球,记甲的得分为,求

7、的分布列;(2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.求;规定,经过计算机计算可估计得,请根据中的值分别写出a,c关于b的表达式,并由此求出数列的通项公式.20(12分)设的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,求的取值范围.21(12分)已知是等差数列,满足,数列满足,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.22(10分)已知函数(1)当时,求不等式的解集;(2)的图象与两坐标轴的交点分别为,若三角形的面积大于,求参数的取值范围.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60

8、分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】解出集合,再由含有个元素的集合,其真子集的个数为个可得答案.【题目详解】解:由,得所以集合的真子集个数为个.故选:C【答案点睛】此题考查利用集合子集个数判断集合元素个数的应用,含有个元素的集合,其真子集的个数为个,属于基础题.2、C【答案解析】根据复数的乘法运算以及纯虚数的概念,可得结果.【题目详解】 为纯虚数,且得,此时故选:C.【答案点睛】本题考查复数的概念与运算,属基础题.3、B【答案解析】根据散点图呈现的特点可以看出,二者具有相关关系,且斜率小于1.【题目详解】散点图里变量的对应点分布在一条直线附近,且比较密集,

9、故可判断语文成绩和英语成绩之间具有较强的线性相关关系,且直线斜率小于1,故选B.【答案点睛】本题主要考查散点图的理解,侧重考查读图识图能力和逻辑推理的核心素养.4、C【答案解析】根据程序框图依次计算得到答案.【题目详解】,;,;,;,;,此时不满足,跳出循环,输出结果为,由题意,得故选:【答案点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.5、C【答案解析】分类讨论,仅有一个阳爻的有坎、艮、震三卦,从中取两卦;从仅有两个阳爻的有巽、离、兑三卦中取一个,再取没有阳爻的坤卦,计算满足条件的种数,利用古典概型即得解.【题目详解】由图可知,仅有一个阳爻的有坎、艮、震三卦,从中取两卦满

10、足条件,其种数是;仅有两个阳爻的有巽、离、兑三卦,没有阳爻的是坤卦,此时取两卦满足条件的种数是,于是所求的概率故选:C【答案点睛】本题考查了古典概型的应用,考查了学生综合分析,分类讨论,数学运算的能力,属于基础题.6、D【答案解析】从第一行的第5列和第6列起由左向右读数划去大于20的数分别为:08,02,14,07,01,所以第5个个体是01,选D.考点:此题主要考查抽样方法的概念、抽样方法中随机数表法,考查学习能力和运用能力.7、A【答案解析】根据偶函数的性质和单调性即可判断.【题目详解】解:对,且,有在上递增因为定义在上的偶函数所以在上递减又因为,所以故选:A【答案点睛】考查偶函数的性质以

11、及单调性的应用,基础题.8、B【答案解析】由,可得,解出即可判断出结论【题目详解】解:因为,且,解得是的必要不充分条件故选:【答案点睛】本题考查了向量数量积运算性质、三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题9、C【答案解析】求得抛物线的焦点坐标,可得双曲线方程的渐近线方程为,由题意可得,又,即,解得,即可得到所求双曲线的方程.【题目详解】解:抛物线的焦点为可得双曲线即为的渐近线方程为由题意可得,即又,即解得,.即双曲线的方程为.故选:C【答案点睛】本题主要考查了求双曲线的方程,属于中档题.10、C【答案解析】显然函数在区间内连续,由的一个零点在区间内,则,即可求解

12、.【题目详解】由题,显然函数在区间内连续,因为的一个零点在区间内,所以,即,解得,故选:C【答案点睛】本题考查零点存在性定理的应用,属于基础题.11、B【答案解析】根据,可排除,然后采用导数,判断原函数的单调性,可得结果.【题目详解】由题可知:,所以当时,又,令,则令,则所以函数在单调递减在单调递增,故选:B【答案点睛】本题考查函数的图像,可从以下指标进行观察:(1)定义域;(2)奇偶性;(3)特殊值;(4)单调性;(5)值域,属基础题.12、A【答案解析】根据正弦定理可得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面积公式,求出面积的最大值.【题目详解】中,由正弦定理可得,整

13、理得,由余弦定理,得.D是AB的中点,且,即,即,当且仅当时,等号成立.的面积,所以面积的最大值为.故选:.【答案点睛】本题考查正、余弦定理、不等式、三角形面积公式和向量的数量积运算,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由题意可设椭圆方程为:短轴的一个端点与两焦点组成一正三角形,焦点在轴上又,椭圆的方程为,故答案为考点:椭圆的标准方程,解三角形以及解方程组的相关知识14、【答案解析】根据均为正数,等价于恒成立,令,转化为恒成立,利用基本不等式求解最值.【题目详解】由题均为正数,不等式恒成立,等价于恒成立,令则,当且仅当即时取得等号,故的最大值为.故答案为:【答案点睛】此题考查不等式恒成立求参数的取值范围,关键在于合理进行等价变形,此题可以构造二次函数求解,也可利用基本不等式求解.15、【答案解析】试题分析:由坐标系可知考点:复数运算16、【答案解析】取的中点,连接,取的中点,连接,直线与所成的角为,计算,根据余弦定理计算得到答案。【题目详解】取的中点,连接,依题意可得,所以平面,所以,因为,分别、的中点,所以,因为,所以,所以平面,故,故,故两两垂直。取的中点,连接,因为,所以直线与所成的角为,设,则,所以,化简得,解得,即.故答案为:.【答案点睛】本题考查了根据

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 实用范文 > 工作计划

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2