收藏 分享(赏)

2023届河南周口市川汇区高三第三次测评数学试卷(含解析).doc

上传人:g****t 文档编号:20071 上传时间:2023-01-06 格式:DOC 页数:21 大小:2.32MB
下载 相关 举报
2023届河南周口市川汇区高三第三次测评数学试卷(含解析).doc_第1页
第1页 / 共21页
2023届河南周口市川汇区高三第三次测评数学试卷(含解析).doc_第2页
第2页 / 共21页
2023届河南周口市川汇区高三第三次测评数学试卷(含解析).doc_第3页
第3页 / 共21页
2023届河南周口市川汇区高三第三次测评数学试卷(含解析).doc_第4页
第4页 / 共21页
2023届河南周口市川汇区高三第三次测评数学试卷(含解析).doc_第5页
第5页 / 共21页
2023届河南周口市川汇区高三第三次测评数学试卷(含解析).doc_第6页
第6页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1命题:的否定为ABCD2已知关于的方程在区间上有两个根,且,则实数的取值范围是( )ABCD3已知实数满足约束条件,则

2、的最小值是ABC1D44设,集合,则()ABCD5已知复数,为的共轭复数,则( )ABCD6的展开式中的系数是-10,则实数( )A2B1C-1D-27在中,为中点,且,若,则( )ABCD8若、满足约束条件,则的最大值为( )ABCD9若函数在处有极值,则在区间上的最大值为( )AB2C1D310已知复数z,则复数z的虚部为( )ABCiDi11已知全集,集合,则( )ABCD12若实数满足的约束条件,则的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13一个袋中装着标有数字1,2,3,4,5的小球各2个,从中任意摸取3个小球,每个小球被取出的可能性相等,则取出的3

3、个小球中数字最大的为4的概率是_14展开式中的系数为_.15实数,满足,如果目标函数的最小值为,则的最小值为_16已知椭圆:的左、右焦点分别为,如图是过且垂直于长轴的弦,则的内切圆方程是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图在直角中,为直角,分别为,的中点,将沿折起,使点到达点的位置,连接,为的中点()证明:面;()若,求二面角的余弦值18(12分)某贫困地区几个丘陵的外围有两条相互垂直的直线型公路,以及铁路线上的一条应开凿的直线穿山隧道,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路, 以所在的直线分别为轴,轴, 建立

4、平面直角坐标系, 如图所示, 山区边界曲线为,设公路与曲线相切于点,的横坐标为.(1)当为何值时,公路的长度最短?求出最短长度;(2)当公路的长度最短时,设公路交轴,轴分别为,两点,并测得四边形中,千米,千米,求应开凿的隧道的长度.19(12分)如图,已知抛物线:与圆: ()相交于, , ,四个点,(1)求的取值范围;(2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.20(12分)设函数.(1)解不等式;(2)记的最大值为,若实数、满足,求证:.21(12分)在如图所示的四棱锥中,四边形是等腰梯形,平面,. (1)求证:平面;(2)已知二面角的余弦值为,求直线与平面所成角的正弦值.2

5、2(10分)如图,在四棱锥中,底面为直角梯形,平面底面,为的中点,是棱上的点且,.求证:平面平面以;求二面角的大小.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】命题为全称命题,它的否定为特称命题,将全称量词改为存在量词,并将结论否定,可知命题的否定为,故选C2、C【答案解析】先利用三角恒等变换将题中的方程化简,构造新的函数,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合,解得的取值范围.【题目详解】由题化简得,作出的图象,又由易知故选:C.【答案点睛】本题考查

6、了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.3、B【答案解析】作出该不等式组表示的平面区域,如下图中阴影部分所示,设,则,易知当直线经过点时,z取得最小值,由,解得,所以,所以,故选B4、B【答案解析】先化简集合A,再求.【题目详解】由 得: ,所以 ,因此 ,故答案为B【答案点睛】本题主要考查集合的化简和运算,意在考查学生对这些知识的掌握水平和计算推理能力.5、C【答案解析】求出,直接由复数的代数形式的乘除运算化简复数.【题目详解】.故选:C【答案点睛】本题考查复数的代数形式的四则运算,共轭复数,属于基础题.6、C【答案解析】利用通项公式找到的系数,令其等于-10即

7、可.【题目详解】二项式展开式的通项为,令,得,则,所以,解得.故选:C【答案点睛】本题考查求二项展开式中特定项的系数,考查学生的运算求解能力,是一道容易题.7、B【答案解析】选取向量,为基底,由向量线性运算,求出,即可求得结果.【题目详解】, ,.故选:B.【答案点睛】本题考查了平面向量的线性运算,平面向量基本定理,属于基础题.8、C【答案解析】作出不等式组所表示的可行域,平移直线,找出直线在轴上的截距最大时对应的最优解,代入目标函数计算即可.【题目详解】作出满足约束条件的可行域如图阴影部分(包括边界)所示由,得,平移直线,当直线经过点时,该直线在轴上的截距最大,此时取最大值,即.故选:C.【

8、答案点睛】本题考查简单的线性规划问题,考查线性目标函数的最值,一般利用平移直线的方法找到最优解,考查数形结合思想的应用,属于基础题.9、B【答案解析】根据极值点处的导数为零先求出的值,然后再按照求函数在连续的闭区间上最值的求法计算即可.【题目详解】解:由已知得,经检验满足题意.,.由得;由得或.所以函数在上递增,在上递减,在上递增.则,由于,所以在区间上的最大值为2.故选:B.【答案点睛】本题考查了导数极值的性质以及利用导数求函数在连续的闭区间上的最值问题的基本思路,属于中档题10、B【答案解析】利用复数的运算法则、虚部的定义即可得出【题目详解】,则复数z的虚部为.故选:B.【答案点睛】本题考

9、查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.11、D【答案解析】根据函数定义域的求解方法可分别求得集合,由补集和交集定义可求得结果.【题目详解】,.故选:.【答案点睛】本题考查集合运算中的补集和交集运算问题,涉及到函数定义域的求解,属于基础题.12、B【答案解析】根据所给不等式组,画出不等式表示的可行域,将目标函数化为直线方程,平移后即可确定取值范围.【题目详解】实数满足的约束条件,画出可行域如下图所示:将线性目标函数化为,则将平移,平移后结合图像可知,当经过原点时截距最小,;当经过时,截距最大值,所以线性目标函数的取值范围为,故选:B.【答案点睛】本题考查了线性规划

10、的简单应用,线性目标函数取值范围的求法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由题,得满足题目要求的情况有,有一个数字4,另外两个数字从1,2,3里面选和有两个数字4,另外一个数字从1,2,3里面选,由此即可得到本题答案.【题目详解】满足题目要求的情况可以分成2大类:有一个数字4,另外两个数字从1,2,3里面选,一共有种情况;有两个数字4,另外一个数字从1,2,3里面选,一共有种情况,又从中任意摸取3个小球,有种情况,所以取出的3个小球中数字最大的为4的概率.故答案为:【答案点睛】本题主要考查古典概型与组合的综合问题,考查学生分析问题和解决问题的能力.1

11、4、【答案解析】变换,根据二项式定理计算得到答案.【题目详解】的展开式的通项为:,取和,计算得到系数为:.故答案为:.【答案点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.15、【答案解析】作出不等式组对应的平面区域,利用目标函数的最小值为,确定出的值,进而确定出C点坐标,结合目标函数几何意义,从而求得结果.【题目详解】先做的区域如图可知在三角形ABC区域内,由得可知,直线的截距最大时,取得最小值,此时直线为,作出直线,交于A点,由图象可知,目标函数在该点取得最小值,所以直线也过A点,由,得,代入,得,所以点C的坐标为等价于点与原点连线的斜率,所以当点为点C时,取得最小值,最小值

12、为,故答案为:.【答案点睛】该题考查的是有关线性规划的问题,在解题的过程中,注意正确画出约束条件对应的可行域,根据最值求出参数,结合分式型目标函数的意义求得最优解,属于中档题目.16、【答案解析】利用公式计算出,其中为的周长,为内切圆半径,再利用圆心到直线AB的距离等于半径可得到圆心坐标.【题目详解】由已知,设内切圆的圆心为,半径为,则,故有,解得,由,或(舍),所以的内切圆方程为.故答案为:.【答案点睛】本题考查椭圆中三角形内切圆的方程问题,涉及到椭圆焦点三角形、椭圆的定义等知识,考查学生的运算能力,是一道中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()详见解

13、析;().【答案解析】()取中点,连结、,四边形是平行四边形,由,得,从而,求出,由此能证明()以为原点,、所在直线分别为,轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值【题目详解】证明:( )取中点,连结、, , 四边形是平行四边形, , , ,在中,又 为的中点,又 ,解:(), ,以为原点,、所在直线分别为,轴,建立空间直角坐标系,设,则, ,设面的法向量,则,取,得,同理,得平面的法向量,设二面角的平面角为,则, 二面角的余弦值为【答案点睛】本题考查面面垂直及线面垂直性质定理、线面垂直判定与性质定理以及利用空间向量求线面角与二面角,考查基本分析求解能力,属中档题18、(1)当时,公路的长度最短为千米;(2)(千米).【答案解析】(1)设切点的坐标为,利用导数的几何意义求出切线的方程为,根据两点间距离得出,构造函数,利用导数求出单调性,从而得出极值和最值,即可得出结果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根据勾股定理即可求出的长度.【题目详解】(1)由题可知,设点的坐标为,又,则直线的方程为,由此得直线与坐标轴交点为:,则,故,设,则.令,解得=10.当时,是减函数;当时,是增函数.所以当时,函数有极小值,也是最小值, 所以, 此时.故当时,公路的长度最短,最短长度为千米.(2) 在中,,所以, 所以,根据正弦定理,,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 实用范文 > 工作计划

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2