收藏 分享(赏)

2023学年中考数学必考考点专题21菱形含解析.docx

上传人:sc****y 文档编号:21121 上传时间:2023-01-06 格式:DOCX 页数:15 大小:518.46KB
下载 相关 举报
2023学年中考数学必考考点专题21菱形含解析.docx_第1页
第1页 / 共15页
2023学年中考数学必考考点专题21菱形含解析.docx_第2页
第2页 / 共15页
2023学年中考数学必考考点专题21菱形含解析.docx_第3页
第3页 / 共15页
2023学年中考数学必考考点专题21菱形含解析.docx_第4页
第4页 / 共15页
2023学年中考数学必考考点专题21菱形含解析.docx_第5页
第5页 / 共15页
2023学年中考数学必考考点专题21菱形含解析.docx_第6页
第6页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、专题21 菱形 专题知识回顾 1菱形的定义 :有一组邻边相等的平行四边形叫做菱形。2.菱形的性质:(1)菱形的四条边都相等;(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。 3.菱形的判定定理:(1)一组邻边相等的平行四边形是菱形; (2)对角线互相垂直的平行四边形是菱形; (3)四条边相等的四边形是菱形。4菱形的面积:S菱形=底边长高=两条对角线乘积的一半专题典型题考法及解析 【例题1】(2023年内蒙古赤峰)如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A2.5B3C4D5【答案】A【解析】四边形ABCD为菱形,CDBC=204=5

2、,且O为BD的中点,E为CD的中点,OE为BCD的中位线,OE=12CB2.5【例题2】(2023年广西梧州)如图,在菱形中,将菱形绕点逆时针方向旋转,对应得到菱形,点在上,与交于点,则的长是【答案】【解析】连接交于,如图所示:四边形是菱形,由旋转的性质得:,四边形是菱形,。 专题典型训练题 一、选择题1.(2023年四川泸州)一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A8B12C16D32【答案】【解析】如图所示:四边形ABCD是菱形,AOCO=12AC,DOBO=12BD,ACBD,面积为28,12ACBD2ODAO28 菱形的边长为6,OD2+OA236 ,由两

3、式可得:(OD+AO)2OD2+OA2+2ODAO36+2864OD+AO8,2(OD+AO)16,即该菱形的两条对角线的长度之和为162.(2023年四川省绵阳市)如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),AOC=60,则对角线交点E的坐标为()A.B. C. D. 【答案】D【解析】过点E作EFx轴于点F,四边形OABC为菱形,AOC=60,=30,FAE=60,A(4,0),OA=4,=2,EF=,OF=AO-AF=4-1=3,3.(2023年四川省广安市)如图,在边长为的菱形中,过点作于点,现将ABE沿直线AE翻折至AFE的位置,AF与CD交于点G则C

4、G等于( ) A. B.1 C. D. .【答案】A【解析】因为B=30,AB=,AEBC,所以BE=,所以EC=-,则CF=3-,又因为CGAB,所以,所以CG=.4.(2023年四川省雅安市)如图,在四边形ABCD中,AB=CD,AC、BD是对角线 ,E、F、G、H分别是AD、BD、BC、AC的中点,连接EF、FG、GH、HE,则四边形EFGH的形状是( )A平行四边形 B矩形 C菱形 D正方形【答案】C【解析】由点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,根据三角形中位线性质,得EFGHAB,EHFGCD,又由AB=CD,得EFFGGHEH时,四边形EFGH是

5、菱形点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,EFGHAB,EHFGCD,AB=CD,EFFGGHEH时,四边形EFGH是菱形,故选C5. (2023年贵州安顺)如图,在菱形ABCD中,按以下步骤作图:分别以点C和点D为圆心,大于CD的长为半径作弧,两弧相交于M、N两点;作直线MN,且MN恰好经过点A,与CD交于点E,连接BE则下列说法错误的是()AABC60BSABE2SADEC若AB4,则BE4DsinCBE【答案】C 【解析】由作法得AE垂直平分CD,即CEDE,AECD,四边形ABCD为菱形,ADCD2DE,ABDE,在RtADE中,cosD,D60,AB

6、C60,所以A选项的结论正确;SABEABAE,SADEDEAE,而AB2DE,SABE2SADE,所以B选项的结论正确;若AB4,则DE2,AE2,在RtABE中,BE2,所以C选项的结论错误;作EHBC交BC的延长线于H,如图,设AB4a,则CE2a,BC4a,BE2a,在CHE中,ECHD60,CHa,EHa,sinCBE,所以D选项的结论正确故选:C6.(2023年贵州贵阳)如图所示,菱形ABCD的周长是4cm,ABC60,那么这个菱形的对角线AC的长是()A1cmB2 cmC3cmD4cm【答案】A 【解析】由于四边形ABCD是菱形,AC是对角线,根据ABC60,而ABBC,易证BA

7、C是等边三角形,从而可求AC的长四边形ABCD是菱形,AC是对角线,ABBCCDAD,ABC60,ABC是等边三角形,ABBCAC,菱形ABCD的周长是4cm,ABBCAC1cm7.(2023年贵州省铜仁市)如图,四边形ABCD为菱形,AB2,DAB60,点E、F分别在边DC、BC上,且CECD,CFCB,则SCEF()ABCD【答案】D【解答】四边形ABCD为菱形,AB2,DAB60ABBCCD2,DCB60CECD,CFCBCECFCEF为等边三角形SCEF8.(2023年河北省)如图,菱形ABCD中,D150,则1()A30B25C20D15【答案】D【解答】四边形ABCD是菱形,D15

8、0,ABCD,BAD21,BAD+D180,BAD18015030,115二、填空题9.(2023年广西北部湾)如图,在菱形ABCD中,对角线AC,BD交与点O,过点A作AHBC于点H,已知BO=4,S菱形ABCD=24,则AH= .【答案】.【解析】本题考查了菱形的性质、勾股定理以及菱形面积公式,根据菱形面积=对角线积的一半可求AC,再根据勾股定理求出BC,然后由菱形的面积即可得出结果四边形ABCD是菱形,BO=DO=4,AO=CO,ACBD,BD=8.S菱形ABCD=ACBD=24,AC=6,OC=AC=3,BC=5,S菱形ABCD=BCAH=24,AH=.10(2023年内蒙古通辽)如图

9、,在边长为3的菱形ABCD中,A60,M是AD边上的一点,且AMAD,N是AB边上的一动点,将AMN沿MN所在直线翻折得到AMN,连接AC则AC长度的最小值是 【答案】1【解析】过点M作MHCD交CD延长线于点H,连接CM,AMAD,ADCD3AM1,MD2CDAB,HDMA60HDMD1,HMHDCH4MC将AMN沿MN所在直线翻折得到AMN,AMAM1,点A在以M为圆心,AM为半径的圆上,当点A在线段MC上时,AC长度有最小值AC长度的最小值MCMA111(2023年湖南常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形根据规定判断下面四个结论:正方形和菱形都

10、是广义菱形;平行四边形是广义菱形;对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;若M、N的坐标分别为(0,1),(0,1),P是二次函数yx2的图象上在第一象限内的任意一点,PQ垂直直线y1于点Q,则四边形PMNQ是广义菱形其中正确的是 (填序号)【答案】【解析】根据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,正确;平行四边形有一组对边平行,没有一组邻边相等,错误;由给出条件无法得到一组对边平行,错误;设点P(m,m2),则Q(m,1),MP,PQ+1,点P在第一象限,m0,MP+1,MPPQ,又MNPQ,四边形PMNQ是广义菱形正确;故答案为12.(2023年湖北十堰

11、)如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE3,则菱形的周长为 【答案】24【解析】四边形ABCD是菱形,ABBCCDAD,BODO,点E是BC的中点,OE是BCD的中位线,CD2OE236,菱形ABCD的周长462413.(2023年北京市) 把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为_【答案】12【解析】设图1中小直角三角形的两直角边长分别为a,b (ab);则由图2和图3列得方程组,由加减消元法得,菱形的面积.故填12.14(2023年辽宁抚顺)如图,菱形ABCD的边长为4cm,A

12、60,BD是以点A为圆心,AB长为半径的弧,CD是以点B为圆心,BC长为半径的弧,则阴影部分的面积为 cm2【答案】4【解析】连接BD,判断出ABD是等边三角形,根据等边三角形的性质可得ABD60,再求出CBD60,然后求出阴影部分的面积SABD,计算即可得解如图,连接BD,四边形ABCD是菱形,ABAD,A60,ABD是等边三角形,ABD60,又菱形的对边ADBC,ABC18060120,CBD1206060,S阴影S扇形BDC(S扇形ABDSABD),SABD,44cm2三、解答题15(2023年湖南岳阳)如图,在菱形ABCD中,点E、F分别为AD、CD边上的点,DEDF,求证:12【答案】见解析【解析】证明:四边形ABCD是菱形,ADCD,在ADF和CDE中,ADFCDE(SAS),1216. (2023年海南省)如图,在边长为l的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q(1)求证:PDEQCE;(2)过点E作EFBC交PB于点F,连结AF,当PBPQ时,求证:四边形AFEP是平行四边形;请判断四边形AFEP是否为菱形,并说明理由【解析】(1)由四边形ABCD是正方形知DECQ90,由E是CD的中点知DECE,结合DEP

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2