1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1将函数的图象向右平移个周期后,所得图象关于轴对称,则的最小正值是( )ABCD2正四棱锥的五个顶点在同一个球面上,它的底面边长为,侧棱长为,则它的外接球的表面积为( )ABCD3在满足,的
2、实数对中,使得成立的正整数的最大值为( )A5B6C7D94二项式的展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )A180B90C45D3605等比数列的各项均为正数,且,则( )A12B10C8D6已知为坐标原点,角的终边经过点且,则( )ABCD7已知椭圆的左、右焦点分别为、,过的直线交椭圆于A,B两点,交y轴于点M,若、M是线段AB的三等分点,则椭圆的离心率为( )ABCD8若满足,且目标函数的最大值为2,则的最小值为( )A8B4CD69设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为( )ABCD10已知函数与的图象有一个横坐标
3、为的交点,若函数的图象的纵坐标不变,横坐标变为原来的倍后,得到的函数在有且仅有5个零点,则的取值范围是( )ABCD11在中,“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件12下列函数中,在区间上为减函数的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13平面向量,(R),且与的夹角等于与的夹角,则 .14若,则=_, = _.15已知集合,其中,.且,则集合中所有元素的和为_.16已知点是抛物线的准线上一点,F为抛物线的焦点,P为抛物线上的点,且,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为_.三、
4、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在三棱柱中,是边长为2的菱形,且,是矩形,且平面平面,点在线段上移动(不与重合),是的中点.(1)当四面体的外接球的表面积为时,证明:.平面(2)当四面体的体积最大时,求平面与平面所成锐二面角的余弦值.18(12分)已知实数x,y,z满足,证明:.19(12分)如图,空间几何体中,是边长为2的等边三角形,平面平面,且平面平面,为中点.(1)证明:平面;(2)求二面角平面角的余弦值.20(12分)设(1)证明:当时,;(2)当时,求整数的最大值.(参考数据:,)21(12分)已知函数,.(1)若曲线在点处的切线方程为,
5、求,;(2)当时,求实数的取值范围.22(10分)在中,角的对边分别为,且,(1)求的值;(2)若求的面积2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】由函数的图象平移变换公式求出变换后的函数解析式,再利用诱导公式得到关于的方程,对赋值即可求解.【题目详解】由题意知,函数的最小正周期为,即,由函数的图象平移变换公式可得,将函数的图象向右平移个周期后的解析式为,因为函数的图象关于轴对称,所以,即,所以当时,有最小正值为.故选:D【答案点睛】本题考查函数的图象平移变换公式和三角函数
6、诱导公式及正余弦函数的性质;熟练掌握诱导公式和正余弦函数的性质是求解本题的关键;属于中档题、常考题型.2、C【答案解析】如图所示,在平面的投影为正方形的中心,故球心在上,计算长度,设球半径为,则,解得,得到答案.【题目详解】如图所示:在平面的投影为正方形的中心,故球心在上,故,设球半径为,则,解得,故.故选:.【答案点睛】本题考查了四棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.3、A【答案解析】由题可知:,且可得,构造函数求导,通过导函数求出的单调性,结合图像得出,即得出,从而得出的最大值.【题目详解】因为,则,即整理得,令,设,则,令,则,令,则,故在上单调递增,在上单调递减,则
7、,因为,由题可知:时,则,所以,所以,当无限接近时,满足条件,所以,所以要使得故当时,可有,故,即,所以:最大值为5.故选:A.【答案点睛】本题主要考查利用导数求函数单调性、极值和最值,以及运用构造函数法和放缩法,同时考查转化思想和解题能力.4、A【答案解析】试题分析:因为的展开式中只有第六项的二项式系数最大,所以,令,则,.考点:1.二项式定理;2.组合数的计算.5、B【答案解析】由等比数列的性质求得,再由对数运算法则可得结论【题目详解】数列是等比数列,故选:B.【答案点睛】本题考查等比数列的性质,考查对数的运算法则,掌握等比数列的性质是解题关键6、C【答案解析】根据三角函数的定义,即可求出
8、,得出,得出和,再利用二倍角的正弦公式,即可求出结果.【题目详解】根据题意,解得,所以,所以,所以.故选:C.【答案点睛】本题考查三角函数定义的应用和二倍角的正弦公式,考查计算能力.7、D【答案解析】根据题意,求得的坐标,根据点在椭圆上,点的坐标满足椭圆方程,即可求得结果.【题目详解】由已知可知,点为中点,为中点,故可得,故可得;代入椭圆方程可得,解得,不妨取,故可得点的坐标为,则,易知点坐标,将点坐标代入椭圆方程得,所以离心率为,故选:D.【答案点睛】本题考查椭圆离心率的求解,难点在于根据题意求得点的坐标,属中档题.8、A【答案解析】作出可行域,由,可得.当直线过可行域内的点时,最大,可得.
9、再由基本不等式可求的最小值.【题目详解】作出可行域,如图所示由,可得.平移直线,当直线过可行域内的点时,最大,即最大,最大值为2.解方程组,得.,当且仅当,即时,等号成立.的最小值为8.故选:.【答案点睛】本题考查简单的线性规划,考查基本不等式,属于中档题.9、D【答案解析】利用向量运算可得,即,由为的中位线,得到,所以,再根据双曲线定义即可求得离心率.【题目详解】取的中点,则由得,即;在中,为的中位线,所以,所以;由双曲线定义知,且,所以,解得,故选:D【答案点睛】本题综合考查向量运算与双曲线的相关性质,难度一般.10、A【答案解析】根据题意,求出,所以,根据三角函数图像平移伸缩,即可求出的
10、取值范围.【题目详解】已知与的图象有一个横坐标为的交点,则,若函数图象的纵坐标不变,横坐标变为原来的倍, 则,所以当时,在有且仅有5个零点, ,.故选:A.【答案点睛】本题考查三角函数图象的性质、三角函数的平移伸缩以及零点个数问题,考查转化思想和计算能力.11、D【答案解析】通过列举法可求解,如两角分别为时【题目详解】当时,但,故充分条件推不出;当时,但,故必要条件推不出;所以“”是“”的既不充分也不必要条件.故选:D.【答案点睛】本题考查命题的充分与必要条件判断,三角函数在解三角形中的具体应用,属于基础题12、C【答案解析】利用基本初等函数的单调性判断各选项中函数在区间上的单调性,进而可得出
11、结果.【题目详解】对于A选项,函数在区间上为增函数;对于B选项,函数在区间上为增函数;对于C选项,函数在区间上为减函数;对于D选项,函数在区间上为增函数.故选:C.【答案点睛】本题考查函数在区间上单调性的判断,熟悉一些常见的基本初等函数的单调性是判断的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【答案解析】试题分析:,与的夹角等于与的夹角,所以考点:向量的坐标运算与向量夹角14、128 21 【答案解析】令,求得的值.利用展开式的通项公式,求得的值.【题目详解】令,得.展开式的通项公式为,当时,为,即.【答案点睛】本小题主要考查二项式展开式的通项公式,考查赋值法求
12、解二项式系数有关问题,属于基础题.15、2889【答案解析】先计算集合中最小的数为,最大的数,可得,求和即得解.【题目详解】当时,集合中最小数;当时,得到集合中最大的数; 故答案为:2889【答案点睛】本题考查了数列与集合综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.16、【答案解析】由点坐标可确定抛物线方程,由此得到坐标和准线方程;过作准线的垂线,垂足为,根据抛物线定义可得,可知当直线与抛物线相切时,取得最小值;利用抛物线切线的求解方法可求得点坐标,根据双曲线定义得到实轴长,结合焦距可求得所求的离心率.【题目详解】是抛物线准线上的一点 抛物线方程为 ,准线方程为过作准线的垂
13、线,垂足为,则 设直线的倾斜角为,则当取得最小值时,最小,此时直线与抛物线相切设直线的方程为,代入得:,解得: 或双曲线的实轴长为,焦距为双曲线的离心率故答案为:【答案点睛】本题考查双曲线离心率的求解问题,涉及到抛物线定义和标准方程的应用、双曲线定义的应用;关键是能够确定当取得最小值时,直线与抛物线相切,进而根据抛物线切线方程的求解方法求得点坐标.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【答案解析】(1)由题意,先求得为的中点,再证明平面平面,进而可得结论;(2)由题意,当点位于点时,四面体的体积最大,再建立空间直角坐标系,利用空间向量运算即可
14、.【题目详解】(1)证明:当四面体的外接球的表面积为时.则其外接球的半径为.因为时边长为2的菱形,是矩形.,且平面平面.则,.则为四面体外接球的直径.所以,即.由题意,所以.因为,所以为的中点.记的中点为,连接,.则,所以平面平面.因为平面,所以平面.(2)由题意,平面,则三棱锥的高不变.当四面体的体积最大时,的面积最大.所以当点位于点时,四面体的体积最大.以点为坐标原点,建立如图所示的空间直角坐标系.则,.所以,.设平面的法向量为.则令,得.设平面的一个法向量为.则令,得.设平面与平面所成锐二面角是,则.所以当四面体的体积最大时,平面与平面所成锐二面角的余弦值为.【答案点睛】本题考查平面与平面的平行、线面平行,考查平面