收藏 分享(赏)

2023学年中考数学基础题型提分讲练专题12锐角三角函数含解析.doc

上传人:sc****y 文档编号:22065 上传时间:2023-01-06 格式:DOC 页数:26 大小:1.65MB
下载 相关 举报
2023学年中考数学基础题型提分讲练专题12锐角三角函数含解析.doc_第1页
第1页 / 共26页
2023学年中考数学基础题型提分讲练专题12锐角三角函数含解析.doc_第2页
第2页 / 共26页
2023学年中考数学基础题型提分讲练专题12锐角三角函数含解析.doc_第3页
第3页 / 共26页
2023学年中考数学基础题型提分讲练专题12锐角三角函数含解析.doc_第4页
第4页 / 共26页
2023学年中考数学基础题型提分讲练专题12锐角三角函数含解析.doc_第5页
第5页 / 共26页
2023学年中考数学基础题型提分讲练专题12锐角三角函数含解析.doc_第6页
第6页 / 共26页
亲,该文档总共26页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、专题12 锐角三角函数必考点1 锐角三角函数:在直角三角形ABC中,C是直角, 1、正弦:把锐角A的对边与斜边的比叫做A的正弦,记作 2、余弦:把锐角A的邻边与斜边的比叫做A的余弦,记作 3、正切:把锐角A的对边与邻边的比叫做A的正切,记作 4、余切:把锐角A的邻边与对边的比叫做A的余切,记作 说明:由定义可以看出tanAcotAl(或写成) 5、锐角三角函数:锐角A的正弦、余弦、正切、余切都叫做A的锐角三角函数 说明:锐角三角函数都不能取负值。 0 sinA l; 0cosA;l 6、锐角的正弦和余弦之间的关系任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值。 即s

2、inAcos(90一 A)cosB;cosAsin(90一A)sinB 7、锐角的正切和余切之间的关系任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。 即tanAcot(90一 A)cotB;cotAtan(90A) tanB 说明:式中的90一A = B 。 8、三角函数值的变化规律 (1)当角度在0 90间变化时,正弦值(正切值随着角度的增大(或减小)而增大(或减小) (2)当角度在090间变化时,余弦值(余切值)随着角度的增大(或减小)而减小(或增大)。 9、同角三角函数关系公式 (1);(2);(3) tanA 10一些特殊角的三角函数值【典例1】(2023

3、年浙江中考真题)如图,矩形的对角线交于点O,已知则下列结论错误的是( )ABCD【答案】C【解析】选项A,四边形ABCD是矩形,ABCDCB90,ACBD,AOCO,BODO,AOOBCODO,DBCACB,由三角形内角和定理得:BACBDC,选项A正确; 选项B,在RtABC中,tan,即BCmtan,选项B正确;选项C,在RtABC中,AC,即AO,选项C错误;选项D,四边形ABCD是矩形,DCABm,BACBDC,在RtDCB中,BD,选项D正确.故选C【点睛】本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键【举一反三】1(2023年浙江中考模拟)在RtABC中,C90

4、,若斜边AB是直角边BC的3倍,则tanB的值是( )AB3CD2【答案】D【解析】设BC=x,则AB=3x,由勾股定理得,AC=,tanB=,故选D考点:1锐角三角函数的定义;2勾股定理2(2023年湖北中考真题)如图,在的正方形网格中,每个小正方形的边长都是,的顶点都在这些小正方形的顶点上,则的值为( )ABCD【答案】D【解析】如图,过作于,则,AC5故选D【点睛】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线是解题的关键3(2023年广东中考真题)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是BAC,若,则次斜坡的水平距离AC为( )A75mB50mC30

5、mD12m【答案】A【解析】解:因为,又BC30,所以,解得:AC75m,所以,故选A.【点睛】本题考查了正切三角函数,熟练掌握是解题的关键.必考点2 解直角三角形及其应用由直角三角形中,除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。若直角三角形ABC中,C90,那么A、B、C,a,b,c中除C90外,其余5个元素之间有关系: (l);(2)A十B90; (3); 所以,只要知道其中的2个元素(至少有一个是边),就可以求出其余3个未知数。 【典例2】(2023年山东中考真题)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B处仰角为30,则甲楼高度为( )A

6、11米B(3615)米C15米D(3610)米【答案】D【解析】解:过点A作AEBD,交BD于点E,在RtABE中,AE30米,BAE30,BE30tan3010(米),ACEDBDBE(3610)(米)甲楼高为(3610)米故选D【点睛】此题主要考查三角函数的应用,解题的关键是熟知特殊角的三角函数值.【举一反三】1.(2023年湖南中考真题)如图,一艘轮船从位于灯塔C的北偏东60方向,距离灯塔60 n mile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45方向上的B处,这时轮船B与小岛A的距离是( )A n mileB60 n mileC120 n mileDn mile

7、【答案】D【解析】过C作CDAB于D点,ACD=30,BCD=45,AC=60在RtACD中,cosACD=,CD=ACcosACD=60在RtDCB中,BCD=B=45,CD=BD=30,AB=AD+BD=30+30答:此时轮船所在的B处与灯塔P的距离是(30+30)nmile故选D【点睛】此题主要考查了解直角三角形的应用-方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线2(2023年四川中考真题)如图,在中,则的值为( )ABCD【答案】D【解析】解:过点A作,垂足为D,如图所示在中,;在中,故选:D【点睛】考查了解直角三角形以及勾股定理,通过解直角

8、三角形及勾股定理,求出AD,AB的长是解题的关键3(2023年辽宁中考模拟)如图,两根竹竿AB和AD斜靠在墙CE上,量得ABC=,ADC=,则竹竿AB与AD的长度之比为ABCD【答案】B【解析】在RtABC中,AB=,在RtACD中,AD=,AB:AD=:=,故选B【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题1(2023年湖南中考真题)如图,在ABC中,C90,AC12,AB的垂直平分线EF交AC于点D,连接BD,若cosBDC,则BC的长是( )A10B8C4D2【答案】D【解析】C90,cosBDC,设CD5x,BD7x,BC2x,AB的垂直平分

9、线EF交AC于点D,ADBD7x,AC12x,AC12,x1,BC2;故选D.【点睛】本题考查直角三角形的性质;熟练掌握直角三角形函数的三角函数值,线段垂直平分线的性质是解题的关键.2(2023年吉林中考真题)如图,一把梯子靠在垂直水平地面的墙上,梯子的长是3米若梯子与地面的夹角为,则梯子顶端到地面的距离BC为()A米B米C米D米【答案】A【解析】解:由题意可得:,故故选:A【点睛】考核知识点:由正弦求边.理解正弦定义是关键.3(2023年四川中考真题)公元三世纪,我国汉代数学家赵爽在注解周髀算经时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形如果大正

10、方形的面积是125,小正方形面积是25,则( )ABCD【答案】A【解析】解:大正方形的面积是125,小正方形面积是25,大正方形的边长为,小正方形的边长为5,故选:A【点睛】本题考查了解直角三角形、勾股定理的证明和正方形的面积,难度适中,解题的关键是正确得出4(2023年重庆中考真题)如图,AB是垂直于水平面的建筑物为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角为(点A,B,C,D,E在同一平面内)斜坡CD的坡度(或坡比),那么建筑物AB的高度约

11、为( )(参考数据,)A65.8米B71.8米C73.8米D119.8米【答案】B【解析】解:过点E作与点M,延长ED交BC于G,斜坡CD的坡度(或坡比),米,设,则在中,即,解得,米,米,米,米,四边形EGBM是矩形,米,米在中,米,米故选:B【点睛】本题考查的是解直角三角形的应用仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键5(2023年甘肃中考真题)在ABC中C90,tanA,则cosB_【答案】【解析】解:在RtABC中,C90,tanA,设ax,b3x,则c2x,cosB故答案为【点睛】此题考查的知识点是三角函数,关键明确求锐角的三角函数值的方法:利用锐角三角函数

12、的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值6(2023年江苏中考真题)如图,在中,则的长为_【答案】【解析】过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则则【点睛】本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解.7(2023年山东中考模拟)如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tanAOD=_.【答案】2【解析】如图,连接BE,四边形BCEK是正方形,KF=CF=CK,BF=BE,CK=BE,BECK,BF=CF,根据题意得:ACBK,ACO

13、BKO,KO:CO=BK:AC=1:3,KO:KF=1:2,KO=OF=CF=BF,在RtPBF中,tanBOF=2,AOD=BOF,tanAOD=2故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用8(2023年四川中考模拟)在ABC中,C=90,若tanA=,则sinB=_【答案】 【解析】如图所示:C=90,tanA=,设BC=x,则AC=2x,故AB=x,则sinB=.故答案为: 点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键9(2023年江苏中考真题)如图,在矩形ABCD中,H是AB的中点,将沿CH折叠,点B落在矩形内点P处,连

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2