收藏 分享(赏)

2023学年河北省邢台市高三下学期联考数学试题(含解析).doc

上传人:g****t 文档编号:22686 上传时间:2023-01-06 格式:DOC 页数:21 大小:2.28MB
下载 相关 举报
2023学年河北省邢台市高三下学期联考数学试题(含解析).doc_第1页
第1页 / 共21页
2023学年河北省邢台市高三下学期联考数学试题(含解析).doc_第2页
第2页 / 共21页
2023学年河北省邢台市高三下学期联考数学试题(含解析).doc_第3页
第3页 / 共21页
2023学年河北省邢台市高三下学期联考数学试题(含解析).doc_第4页
第4页 / 共21页
2023学年河北省邢台市高三下学期联考数学试题(含解析).doc_第5页
第5页 / 共21页
2023学年河北省邢台市高三下学期联考数学试题(含解析).doc_第6页
第6页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并

2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,是椭圆的左、右焦点,过的直线交椭圆于两点.若依次构成等差数列,且,则椭圆的离心率为ABCD2已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为( )ABCD3已知条件,条件直线与直线平行,则是的( )A充要条件B必要不充分条件C充分不必要条件D既不充分也不必要条件4正三棱锥底面边长为3,侧棱与底面成角,则正三棱锥的外接球的体积为( )ABCD5已知各项都为正的等差数列中,若,成等比数列,则( )ABCD6若,则下列不等式不能成立的是( )ABCD7中国古代中的“礼、乐、

3、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有( )种.A408B120C156D2408若,则, , , 的大小关系为( )ABCD9如图,在直三棱柱中,点分别是线段的中点,分别记二面角,的平面角为,则下列结论正确的是( )ABCD10已知某几何体的三视图如图所示,则该几何体的体积是( )AB64CD3211如图是正方体截

4、去一个四棱锥后的得到的几何体的三视图,则该几何体的体积是( )ABCD12函数的图象与轴交点的横坐标构成一个公差为的等差数列,要得到函数的图象,只需将的图象( )A向左平移个单位B向右平移个单位C向左平移个单位D向右平移个单位二、填空题:本题共4小题,每小题5分,共20分。13如图,在三棱锥中,平面,已知,则当最大时,三棱锥的体积为_14已知双曲线C:()的左、右焦点为,为双曲线C上一点,且,若线段与双曲线C交于另一点A,则的面积为_.15的展开式中,的系数为_(用数字作答).16若,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)讨论的单调性

5、;(2)若恒成立,求实数的取值范围.18(12分)在直角坐标系中,曲线的参数方程为(为参数),坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若曲线、交于、两点,是曲线上的动点,求面积的最大值.19(12分)有甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪元,送餐员每单制成元;乙公司无底薪,单以内(含单)的部分送餐员每单抽成元,超过单的部分送餐员每单抽成元.现从这两家公司各随机选取一名送餐员,分别记录其天的送餐单数,得到如下频数分布表:送餐单数3839404142甲公司天数101015105乙公司天数101510105

6、(1)从记录甲公司的天送餐单数中随机抽取天,求这天的送餐单数都不小于单的概率;(2)假设同一公司的送餐员一天的送餐单数相同,将频率视为概率,回答下列两个问题:求乙公司送餐员日工资的分布列和数学期望;小张打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,小张应选择哪家公司应聘?说明你的理由.20(12分)如图,正方体的棱长为2,为棱的中点.(1)面出过点且与直线垂直的平面,标出该平面与正方体各个面的交线(不必说明画法及理由);(2)求与该平面所成角的正弦值.21(12分)已知数列的前项和为,且点在函数的图像上;(1)求数列的通项公式;(2)设数列满足:,求的通项公式;(3)在第(

7、2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;22(10分)已知是等腰直角三角形,分别为的中点,沿将折起,得到如图所示的四棱锥()求证:平面平面()当三棱锥的体积取最大值时,求平面与平面所成角的正弦值2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】如图所示,设依次构成等差数列,其公差为.根据椭圆定义得,又,则,解得,.所以,.在和中,由余弦定理得,整理解得.故选D2、C【答案解析】求导,先求出在单增,在单减,且知设,则方程有4个不同的实数根等价于方程在上有两个不同

8、的实数根,再利用一元二次方程根的分布条件列不等式组求解可得.【题目详解】依题意,令,解得,故当时,当,且,故方程在上有两个不同的实数根,故,解得.故选:C.【答案点睛】本题考查确定函数零点或方程根个数.其方法:(1)构造法:构造函数(易求,可解),转化为确定的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出的图象草图,数形结合求解;(2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.3、C【答案解析】先根据直线与直线平行确定的值,进而即可确定结

9、果.【题目详解】因为直线与直线平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要条件.故选C【答案点睛】本题主要考查充分条件和必要条件的判定,熟记概念即可,属于基础题型.4、D【答案解析】由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积【题目详解】如图,正三棱锥中,是底面的中心,则是正棱锥的高,是侧棱与底面所成的角,即60,由底面边长为3得,正三棱锥外接球球心必在上,设球半径为,则由得,解得,故选:D【答案点睛】本题考查球体积,考查正三棱锥与外接球的关系掌握正棱锥性质是解题关键5、A【答案解析】试题分析:设公差为或(舍),故选A.考点:等差数列及

10、其性质.6、B【答案解析】根据不等式的性质对选项逐一判断即可.【题目详解】选项A:由于,即,所以,所以,所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.【答案点睛】本题考查不等关系和不等式,属于基础题.7、A【答案解析】利用间接法求解,首先对6门课程全排列,减去“乐”排在第一节的情况,再减去“射”和“御”两门课程相邻的情况,最后还需加上“乐”排在第一节,且“射”和“御”两门课程相邻的情况;【题目详解】解:根据题意,首先不做任何考虑直接全排列则有(种),当“乐”排在第一节有(种),当“射”和“御”两门课程

11、相邻时有(种),当“乐”排在第一节,且“射”和“御”两门课程相邻时有(种),则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有(种),故选:【答案点睛】本题考查排列、组合的应用,注意“乐”的排列对“射”和“御”两门课程相邻的影响,属于中档题8、D【答案解析】因为,所以,因为,所以,.综上;故选D.9、D【答案解析】过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法求解二面角的余弦值得答案【题目详解】解:因为,所以,即过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,则,0,0,1,设平面的法向量, 则,取,得,同理可求平面的法向量,平面的法向量,平面的法向量,

12、故选:D【答案点睛】本题考查二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题10、A【答案解析】根据三视图,还原空间几何体,即可得该几何体的体积.【题目详解】由该几何体的三视图,还原空间几何体如下图所示:可知该几何体是底面在左侧的四棱锥,其底面是边长为4的正方形,高为4,故.故选:A【答案点睛】本题考查了三视图的简单应用,由三视图还原空间几何体,棱锥体积的求法,属于基础题.11、C【答案解析】根据三视图作出几何体的直观图,结合三视图的数据可求得几何体的体积.【题目详解】根据三视图还原几何体的直观图如下图所示:由图可知,该几何体是在棱长为的正方体

13、中截去四棱锥所形成的几何体,该几何体的体积为.故选:C.【答案点睛】本题考查利用三视图计算几何体的体积,考查空间想象能力与计算能力,属于基础题.12、A【答案解析】依题意有的周期为.而,故应左移.二、填空题:本题共4小题,每小题5分,共20分。13、4【答案解析】设,则,当且仅当,即时,等号成立.,故答案为414、【答案解析】由已知得即,,可解得,由在双曲线C上,代入即可求得双曲线方程,然后求得直线的方程与双曲线方程联立求得点A坐标,借助,即可解得所求.【题目详解】由已知得,又,所以,解得或,由在双曲线C上,所以或,所以或(舍去),因此双曲线C的方程为.又,所以线段的方程为,与双曲线C的方程联

14、立消去x整理得,所以,所以点A坐标为,所以.【答案点睛】本题主要考查直线与双曲线的位置关系,考查双曲线方程的求解,考查求三角形面积,考查学生的计算能力,难度较难.15、60【答案解析】根据二项式定理展开式通项,即可求得的系数.【题目详解】因为,所以,则所求项的系数为.故答案为:60【答案点睛】本题考查了二项展开式通项公式的应用,指定项系数的求法,属于基础题.16、【答案解析】由, 得出,根据两角和与差的正弦公式和余弦公式化简,再利用齐次式即可求出结果.【题目详解】因为, 所以,所以.故答案为:.【答案点睛】本题考查三角函数化简求值,利用二倍角正切公式、两角和与差的正弦公式和余弦公式,以及运用齐次式求值,属于对公式的考查以及对计算能力的考查.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)当时,在上单调递增;当时,在上单调递减,在上单调递增;

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2