1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若,则“”的一个充分不必要条件是ABC且D或2已知,且,则的值为( )ABCD3设双曲线(a0,b0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D若D到直线BC的距离小于,则该双曲
2、线的渐近线斜率的取值范围是 ( )ABCD4已知等差数列的公差为-2,前项和为,若,为某三角形的三边长,且该三角形有一个内角为,则的最大值为( )A5B11C20D255如图是正方体截去一个四棱锥后的得到的几何体的三视图,则该几何体的体积是( )ABCD6两圆和相外切,且,则的最大值为( )AB9CD17若直线与圆相交所得弦长为,则( )A1B2CD38设全集,集合,则( )ABCD9某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得,参照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正
3、确结论是( )A有99%以上的把握认为“学生性别与中学生追星无关”B有99%以上的把握认为“学生性别与中学生追星有关”C在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”D在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”10设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为,则为( )ABCD11在中,点,分别在线段,上,且,则( )ABC4D912已知命题p:“”是“”的充要条件;,则( )A为真命题B为真命题C为真命题D为
4、假命题二、填空题:本题共4小题,每小题5分,共20分。13齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为_14(5分)有一道描述有关等差与等比数列的问题:有四个和尚在做法事之前按身高从低到高站成一列,已知前三个和尚的身高依次成等差数列,后三个和尚的身高依次成等比数列,且前三个和尚的身高之和为cm,中间两个和尚的身高之和为cm,则最高的和尚的身高是_ cm15的展开式中二项式系数最大的项的系数为_(用数字作答).16工人在安装一个正六边形零
5、件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在中,角的对边分别为,已知(1)求角的大小;(2)若,求的面积18(12分)在平面直角坐标系xOy中,抛物线C:,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为().(1)求抛物线C的极坐标方程;(2)若抛物线C与直线l交于A,B两点,求的值.19(12分)如图,在三棱锥中,平面平面,.点,分别为线段,的中点,点是线段的中点.(1)求证:平面.(2)判断与平面的位置
6、关系,并证明.20(12分)已知函数.(1)解不等式;(2)若函数的最小值为,求的最小值.21(12分)如图,在四棱锥中,侧棱底面,是棱中点.(1)已知点在棱上,且平面平面,试确定点的位置并说明理由;(2)设点是线段上的动点,当点在何处时,直线与平面所成角最大?并求最大角的正弦值.22(10分)已知数列an满足条件,且an+2(1)n(an1)+2an+1,nN*()求数列an的通项公式;()设bn,Sn为数列bn的前n项和,求证:Sn2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解
7、析】,当且仅当 时取等号.故“且 ”是“”的充分不必要条件.选C2、A【答案解析】由及得到、,进一步得到,再利用两角差的正切公式计算即可.【题目详解】因为,所以,又,所以,所以.故选:A.【答案点睛】本题考查三角函数诱导公式、二倍角公式以及两角差的正切公式的应用,考查学生的基本计算能力,是一道基础题.3、A【答案解析】由题意,根据双曲线的对称性知在轴上,设,则由得:,因为到直线的距离小于,所以,即,所以双曲线渐近线斜率,故选A4、D【答案解析】由公差d=-2可知数列单调递减,再由余弦定理结合通项可求得首项,即可求出前n项和,从而得到最值.【题目详解】等差数列的公差为-2,可知数列单调递减,则,
8、中最大,最小,又,为三角形的三边长,且最大内角为, 由余弦定理得,设首项为,即得,所以或,又即,舍去,d=-2前项和.故的最大值为.故选:D【答案点睛】本题考查等差数列的通项公式和前n项和公式的应用,考查求前n项和的最值问题,同时还考查了余弦定理的应用.5、C【答案解析】根据三视图作出几何体的直观图,结合三视图的数据可求得几何体的体积.【题目详解】根据三视图还原几何体的直观图如下图所示:由图可知,该几何体是在棱长为的正方体中截去四棱锥所形成的几何体,该几何体的体积为.故选:C.【答案点睛】本题考查利用三视图计算几何体的体积,考查空间想象能力与计算能力,属于基础题.6、A【答案解析】由两圆相外切
9、,得出,结合二次函数的性质,即可得出答案.【题目详解】因为两圆和相外切所以,即当时,取最大值故选:A【答案点睛】本题主要考查了由圆与圆的位置关系求参数,属于中档题.7、A【答案解析】将圆的方程化简成标准方程,再根据垂径定理求解即可.【题目详解】圆的标准方程,圆心坐标为,半径为,因为直线与圆相交所得弦长为,所以直线过圆心,得,即.故选:A【答案点睛】本题考查了根据垂径定理求解直线中参数的方法,属于基础题.8、D【答案解析】求解不等式,得到集合A,B,利用交集、补集运算即得解【题目详解】由于 故集合或 故集合 故选:D【答案点睛】本题考查了集合的交集和补集混合运算,考查了学生概念理解,数学运算的能
10、力,属于中档题.9、B【答案解析】通过与表中的数据6.635的比较,可以得出正确的选项.【题目详解】解:,可得有99%以上的把握认为“学生性别与中学生追星有关”,故选B.【答案点睛】本题考查了独立性检验的应用问题,属于基础题.10、D【答案解析】由题意,设第次爬行后仍然在上底面的概率为.若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,可得,根据求数列的通项知识可得选项.【题目详解】由题意,设第次爬行后仍然在上底面的概率为.若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;若上一步在下面,则第
11、步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,,即,数列是以为公比的等比数列,而,所以,当时,故选:D.【答案点睛】本题考查几何体中的概率问题,关键在于运用递推的知识,得出相邻的项的关系,这是常用的方法,属于难度题.11、B【答案解析】根据题意,分析可得,由余弦定理求得的值,由可得结果.【题目详解】根据题意,则在中,又,则则则则故选:B【答案点睛】此题考查余弦定理和向量的数量积运算,掌握基本概念和公式即可解决,属于简单题目.12、B【答案解析】由的单调性,可判断p是真命题;分类讨论打开绝对值,可得q是假命题,依次分析即得解【题目详解】由函数是R上的增函数,知命题p是真命题对于命
12、题q,当,即时,;当,即时,由,得,无解,因此命题q是假命题所以为假命题,A错误;为真命题,B正确;为假命题,C错误;为真命题,D错误故选:B【答案点睛】本题考查了命题的逻辑连接词,考查了学生逻辑推理,分类讨论,数学运算的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、.【答案解析】分析:由题意结合古典概型计算公式即可求得题中的概率值.详解:由题意可知了,比赛可能的方法有种,其中田忌可获胜的比赛方法有三种:田忌的中等马对齐王的下等马,田忌的上等马对齐王的下等马,田忌的上等马对齐王的中等马,结合古典概型公式可得,田忌的马获胜的概率为.点睛:有关古典概型的概率问题,关键是正
13、确求出基本事件总数和所求事件包含的基本事件数(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举(2)注意区分排列与组合,以及计数原理的正确使用.14、【答案解析】依题意设前三个和尚的身高依次为,第四个(最高)和尚的身高为,则,解得,又,解得,又因为成等比数列,则公比,故.15、5670【答案解析】根据二项式展开的通项,可得二项式系数的最大项,可求得其系数.【题目详解】二项展开式一共有项,所以由二项式系数的性质可知二项式系数最大的项为第5项,系数为.故答案为:5670【答案点睛】本题考查了二项式定理展开式的应用,由通项公式求二项式系数,属于中档
14、题.16、60【答案解析】分析:首先将选定第一个钉,总共有6种方法,假设选定1号,之后分析第二步,第三步等,按照分类加法计数原理,可以求得共有10种方法,利用分步乘法计数原理,求得总共有种方法.详解:根据题意,第一个可以从6个钉里任意选一个,共有6种选择方法,并且是机会相等的,若第一个选1号钉的时候,第二个可以选3,4,5号钉,依次选下去,可以得到共有10种方法,所以总共有种方法,故答案是60.点睛:该题考查的是有关分类加法计数原理和分步乘法计数原理,在解题的过程中,需要逐个的将对应的过程写出来,所以利用列举法将对应的结果列出,而对于第一个选哪个是机会均等的,从而用乘法运算得到结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【答案解析】(1)利用正弦定理边化角,再利用二倍角的正弦公式与正弦的和角公式化简求解即可.(2)由(1)有,根据正弦定理可得,进