1、2023学年高考数学模拟测试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求
2、的。1如图所示的程序框图,当其运行结果为31时,则图中判断框处应填入的是( )ABCD2若复数,则( )ABCD203若的二项展开式中的系数是40,则正整数的值为( )A4B5C6D74对两个变量进行回归分析,给出如下一组样本数据:,下列函数模型中拟合较好的是( )ABCD5已知函数,若,则下列不等关系正确的是( )ABCD6已知命题,;命题若,则,下列命题为真命题的是()ABCD7已知复数是纯虚数,其中是实数,则等于( )ABCD8已知是的共轭复数,则( )ABCD9双曲线:(,)的一个焦点为(),且双曲线的两条渐近线与圆:均相切,则双曲线的渐近线方程为( )ABCD10设是虚数单位,复数(
3、)ABCD11若点是角的终边上一点,则( )ABCD12已知i为虚数单位,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知在等差数列中,前n项和为,则_.14已知, 是互相垂直的单位向量,若 与的夹角为60,则实数的值是_15函数的定义域为_.16三对父子去参加亲子活动,坐在如图所示的6个位置上,有且仅有一对父子是相邻而坐的坐法有_种(比如:B与D、B与C是相邻的,A与D、C与D是不相邻的).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知件次品和件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出件次
4、品或者检测出件正品时检测结束(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用元,设表示直到检测出件次品或者检测出件正品时所需要的检测费用(单位:元),求的分布列18(12分)如图,在四棱锥中,侧棱底面,是棱的中点.(1)求证:平面;(2)若,点是线段上一点,且,求直线与平面所成角的正弦值.19(12分)2019年是五四运动100周年.五四运动以来的100年,是中国青年一代又一代接续奋斗、凯歌前行的100年,是中口青年用青春之我创造青春之中国、青春之民族的100年.为继承和发扬五四精神在青年节到来之际,学校组织“五四运动100周年”知识竞赛,竞赛的一个环
5、节由10道题目组成,其中6道A类题、4道B类题,参赛者需从10道题目中随机抽取3道作答,现有甲同学参加该环节的比赛.(1)求甲同学至少抽到2道B类题的概率;(2)若甲同学答对每道A类题的概率都是,答对每道B类题的概率都是,且各题答对与否相互独立.现已知甲同学恰好抽中2道A类题和1道B类题,用X表示甲同学答对题目的个数,求随机变量X的分布列和数学期望.20(12分)已知函数当时,求不等式的解集;,求a的取值范围21(12分)已知椭圆的离心率为,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线与椭圆C交于两点,是否存在实数k使得以线段为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存
6、在,请说明理由.22(10分)已知椭圆的左顶点为,左、右焦点分别为,离心率为,是椭圆上的一个动点(不与左、右顶点重合),且的周长为6,点关于原点的对称点为,直线交于点.(1)求椭圆方程;(2)若直线与椭圆交于另一点,且,求点的坐标.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】根据程序框图的运行,循环算出当时,结束运行,总结分析即可得出答案.【题目详解】由题可知,程序框图的运行结果为31,当时,;当时,;当时,;当时,;当时,.此时输出.故选:C.【答案点睛】本题考查根据程序框
7、图的循环结构,已知输出结果求条件框,属于基础题.2、B【答案解析】化简得到,再计算模长得到答案.【题目详解】,故.故选:.【答案点睛】本题考查了复数的运算,复数的模,意在考查学生的计算能力.3、B【答案解析】先化简的二项展开式中第项,然后直接求解即可【题目详解】的二项展开式中第项.令,则,(舍)或.【答案点睛】本题考查二项展开式问题,属于基础题4、D【答案解析】作出四个函数的图象及给出的四个点,观察这四个点在靠近哪个曲线【题目详解】如图,作出A,B,C,D中四个函数图象,同时描出题中的四个点,它们在曲线的两侧,与其他三个曲线都离得很远,因此D是正确选项,故选:D【答案点睛】本题考查回归分析,拟
8、合曲线包含或靠近样本数据的点越多,说明拟合效果好5、B【答案解析】利用函数的单调性得到的大小关系,再利用不等式的性质,即可得答案.【题目详解】在R上单调递增,且,.的符号无法判断,故与,与的大小不确定,对A,当时,故A错误;对C,当时,故C错误;对D,当时,故D错误;对B,对,则,故B正确.故选:B.【答案点睛】本题考查分段函数的单调性、不等式性质的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.6、B【答案解析】解:命题p:x0,ln(x+1)0,则命题p为真命题,则p为假命题;取a=1,b=2,ab,但a2b2,则命题q是假命题,则q是真命题pq是假命
9、题,pq是真命题,pq是假命题,pq是假命题故选B7、A【答案解析】对复数进行化简,由于为纯虚数,则化简后的复数形式中,实部为0,得到的值,从而得到复数.【题目详解】 因为为纯虚数,所以,得所以.故选A项【答案点睛】本题考查复数的四则运算,纯虚数的概念,属于简单题.8、A【答案解析】先利用复数的除法运算法则求出的值,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b【题目详解】i,a+bii,a0,b1,a+b1,故选:A【答案点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题9、A【答案解析】根据题意得到,化简得到,得到答案.【题目详解】根据题意知:焦点
10、到渐近线的距离为,故,故渐近线为.故选:.【答案点睛】本题考查了直线和圆的位置关系,双曲线的渐近线,意在考查学生的计算能力和转化能力.10、D【答案解析】利用复数的除法运算,化简复数,即可求解,得到答案【题目详解】由题意,复数,故选D【答案点睛】本题主要考查了复数的除法运算,其中解答中熟记复数的除法运算法则是解答的关键,着重考查了运算与求解能力,属于基础题11、A【答案解析】根据三角函数的定义,求得,再由正弦的倍角公式,即可求解.【题目详解】由题意,点是角的终边上一点,根据三角函数的定义,可得,则,故选A.【答案点睛】本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角
11、函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题.12、A【答案解析】根据复数乘除运算法则,即可求解.【题目详解】.故选:A.【答案点睛】本题考查复数代数运算,属于基础题题.二、填空题:本题共4小题,每小题5分,共20分。13、39【答案解析】设等差数列公差为d,首项为,再利用基本量法列式求解公差与首项,进而求得即可.【题目详解】设等差数列公差为d,首项为,根据题意可得,解得,所以.故答案为:39【答案点睛】本题考查等差数列的基本量计算以及前n项和的公式,属于基础题.14、【答案解析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出的
12、值【题目详解】解:由题意,设(1,0),(0,1),则(,1),(1,);又夹角为60,()()2cos60,即,解得【答案点睛】本题考查了单位向量和平面向量数量积的运算问题,是中档题15、【答案解析】由题意得,解得定义域为16、192【答案解析】根据题意,分步进行分析:,在三对父子中任选1对,安排在相邻的位置上,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,由分步计数原理计算可得答案【题目详解】根据题意,分步进行分析:,在三对父子中任选1对,有3种选法,由图可得相邻的位置有4种情况,将选出的1对父子安排在相邻的位置,有种安排方法;,将剩下的4人安排在剩下的4个位置,要求父子不
13、能坐在相邻的位置,有种安排方法,则有且仅有一对父子是相邻而坐的坐法种;故答案为:【答案点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【答案解析】(1)利用独立事件的概率乘法公式可计算出所求事件的概率;(2)由题意可知随机变量的可能取值有、,计算出随机变量在不同取值下的概率,由此可得出随机变量的分布列.【题目详解】(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件,则;(2)由题意可知,随机变量的可能取值为、则,故的分布列为【答案点睛】本题考查概率的计算,同时也考查了随机变量分布列,考查计算能力,属于基础题.18、(1)证明见解析;(2)【答案解析】(1)的中点,连接,证明四边形是平行四边形可得,故而平面;(2)以为原点建立空间坐标系,求出平面的法向量,计算与的夹角的余弦值得出答案【题目详解】(1)证明:取的中点,连接,分别是,的中点,又,四边形是平行四边形,又平面,平面,平面(2)解:,又,故,以为原点,以,为坐标轴建立空间直角坐标系,则,0,0,2,0,2,是的中点,是的三等分点,1,0,2,设平面的法向量为,则,即,令可得, 直线与平面所成角的正弦值为【答案点睛】本题考查了线面平行的判定,空间向量与直线与平面所成角的计算