收藏 分享(赏)

2023学年甘肃省武威第二中学高三下学期联合考试数学试题(含解析).doc

上传人:g****t 文档编号:23034 上传时间:2023-01-06 格式:DOC 页数:22 大小:2.25MB
下载 相关 举报
2023学年甘肃省武威第二中学高三下学期联合考试数学试题(含解析).doc_第1页
第1页 / 共22页
2023学年甘肃省武威第二中学高三下学期联合考试数学试题(含解析).doc_第2页
第2页 / 共22页
2023学年甘肃省武威第二中学高三下学期联合考试数学试题(含解析).doc_第3页
第3页 / 共22页
2023学年甘肃省武威第二中学高三下学期联合考试数学试题(含解析).doc_第4页
第4页 / 共22页
2023学年甘肃省武威第二中学高三下学期联合考试数学试题(含解析).doc_第5页
第5页 / 共22页
2023学年甘肃省武威第二中学高三下学期联合考试数学试题(含解析).doc_第6页
第6页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数的最小正周期是,则其图象向左平移个单位长度后得到的函数的一条对称轴是( )ABCD2已知函数的最小正周期为,且满足,则要得到函数的图像,可将函数的图像( )A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度3抛物

2、线方程为,一直线与抛物线交于两点,其弦的中点坐标为,则直线的方程为( )ABCD4已知函数,若函数在上有3个零点,则实数的取值范围为( )ABCD5已知为定义在上的偶函数,当时,则( )ABCD61777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为( )ABCD7已知ABC中,点P为BC边上的动点,则的最小值为

3、()A2BCD8设为等差数列的前项和,若,则ABCD9单位正方体ABCD-,黑、白两蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”白蚂蚁爬地的路线是AA1A1D1,黑蚂蚁爬行的路线是ABBB1,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(iN*).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是( )A1BCD010是正四面体的面内一动点,为棱中点,记与平面成角为定值,若点的轨迹为一段抛物线,则( )ABCD11在中,则=( )ABCD12双曲线的离心率为,则其渐近线方程为ABCD二、填空题:本题共4小题,每小题5分,共2

4、0分。13设第一象限内的点(x,y)满足约束条件,若目标函数zaxby(a0,b0)的最大值为40,则的最小值为_.14设,满足约束条件,则的最大值为_.15 “北斗三号”卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R,若其近地点远地点离地面的距离大约分别是,则“北斗三号”卫星运行轨道的离心率为_.16在平面直角坐标系中,若函数在处的切线与圆存在公共点,则实数的取值范围为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥中,平面,四边形为正方形,点为线段上的点,过三点的平面与交于点.将,中的两个补充到已知条件中,解答下列问题:(1)求平面将四棱

5、锥分成两部分的体积比;(2)求直线与平面所成角的正弦值.18(12分)设数列满足,.(1)求数列的通项公式;(2)设,求数列的前项和.19(12分)已知函数与的图象关于直线对称. (为自然对数的底数)(1)若的图象在点处的切线经过点,求的值;(2)若不等式恒成立,求正整数的最小值.20(12分)已知,设函数(I)若,求的单调区间:(II)当时,的最小值为0,求的最大值.注:为自然对数的底数.21(12分)已知数列an的各项均为正,Sn为数列an的前n项和,an2+2an4Sn+1(1)求an的通项公式;(2)设bn,求数列bn的前n项和22(10分)已知函数.(1)求的极值;(2)若,且,证明

6、:.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】由三角函数的周期可得,由函数图像的变换可得, 平移后得到函数解析式为,再求其对称轴方程即可.【题目详解】解:函数的最小正周期是,则函数,经过平移后得到函数解析式为,由,得,当时,.故选D.【答案点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.2、C【答案解析】依题意可得,且是的一条对称轴,即可求出的值,再根据三角函数的平移规则计算可得;【题目详解】解:由已知得,是的一条对称轴,且使取得最值,则,故选:C.【答案

7、点睛】本题考查三角函数的性质以及三角函数的变换规则,属于基础题.3、A【答案解析】设,利用点差法得到,所以直线的斜率为2,又过点,再利用点斜式即可得到直线的方程.【题目详解】解:设,又,两式相减得:,直线的斜率为2,又过点,直线的方程为:,即,故选:A.【答案点睛】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系4、B【答案解析】根据分段函数,分当,将问题转化为的零点问题,用数形结合的方法研究.【题目详解】当时,令,在是增函数,时,有一个零点,当时,令当时,在上单调递增,当时,在上单调递减,所以当时,取得

8、最大值,因为在上有3个零点,所以当时,有2个零点,如图所示:所以实数的取值范围为综上可得实数的取值范围为, 故选:B【答案点睛】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题.5、D【答案解析】判断,利用函数的奇偶性代入计算得到答案.【题目详解】,故选:【答案点睛】本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.6、D【答案解析】根据统计数据,求出频率,用以估计概率.【题目详解】.故选:D.【答案点睛】本题以数学文化为背景,考查利用频率估计概率,属于基础题.7、D【答案解析】以BC的中点为坐标原点,建立直角坐标系,可得,设,运用向量的坐标表

9、示,求得点A的轨迹,进而得到关于a的二次函数,可得最小值【题目详解】以BC的中点为坐标原点,建立如图的直角坐标系,可得,设,由,可得,即,则,当时,的最小值为故选D【答案点睛】本题考查向量数量积的坐标表示,考查转化思想和二次函数的值域解法,考查运算能力,属于中档题8、C【答案解析】根据等差数列的性质可得,即,所以,故选C9、B【答案解析】根据规则,观察黑蚂蚁与白蚂蚁经过几段后又回到起点,得到每爬1步回到起点,周期为1计算黑蚂蚁爬完2020段后实质是到达哪个点以及计算白蚂蚁爬完2020段后实质是到达哪个点,即可计算出它们的距离【题目详解】由题意,白蚂蚁爬行路线为AA1A1D1D1C1C1CCBB

10、A,即过1段后又回到起点,可以看作以1为周期,由,白蚂蚁爬完2020段后到回到C点;同理,黑蚂蚁爬行路线为ABBB1B1C1C1D1D1DDA,黑蚂蚁爬完2020段后回到D1点,所以它们此时的距离为.故选B.【答案点睛】本题考查多面体和旋转体表面上的最短距离问题,考查空间想象与推理能力,属于中等题.10、B【答案解析】设正四面体的棱长为,建立空间直角坐标系,求出各点的坐标,求出面的法向量,设的坐标,求出向量,求出线面所成角的正弦值,再由角的范围,结合为定值,得出为定值,且的轨迹为一段抛物线,所以求出坐标的关系,进而求出正切值【题目详解】由题意设四面体的棱长为,设为的中点,以为坐标原点,以为轴,

11、以为轴,过垂直于面的直线为轴,建立如图所示的空间直角坐标系,则可得,取的三等分点、如图,则,所以、,由题意设,和都是等边三角形,为的中点,平面,为平面的一个法向量,因为与平面所成角为定值,则,由题意可得,因为的轨迹为一段抛物线且为定值,则也为定值,可得,此时,则,.故选:B.【答案点睛】考查线面所成的角的求法,及正切值为定值时的情况,属于中等题11、B【答案解析】在上分别取点,使得,可知为平行四边形,从而可得到,即可得到答案【题目详解】如下图,在上分别取点,使得,则为平行四边形,故,故答案为B. 【答案点睛】本题考查了平面向量的线性运算,考查了学生逻辑推理能力,属于基础题12、A【答案解析】分

12、析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】不等式表示的平面区域阴影部分,当直线ax+by=z(a0,b0)过直线xy+2=0与直线2xy6=0的交点(8,10)时,目标函数z=ax+by(a0,b0)取得最大40,即8a+10b=40,即4a+5b=20,而当且仅当时取等号,则的最小值为.14、29【答案解析】由约束条件作出可行域,化目标函数为以原点为圆心的圆,数形结合得到最优解,联立方程组求得最优解的坐

13、标,代入目标函数得答案.【题目详解】由约束条件作出可行域如图:联立,解得,目标函数是以原点为圆心,以为半径的圆,由图可知,此圆经过点A时,半径最大,此时也最大,最大值为.所以本题答案为29.【答案点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.15、【答案解析】画出图形,结合椭圆的定义和题设条件,求得的值,即可求得椭圆的离心率,得到答案.【题目详解】如图所示,设椭圆的长半轴为,半焦距为,因为地球半径为R,若其近地点远

14、地点离地面的距离大约分别是,可得,解得,所以椭圆的离心率为.故答案为:.【答案点睛】本题主要考查了椭圆的离心率的求解,其中解答中熟记椭圆的几何性质,列出方程组,求得的值是解答的关键,着重考查了推理与计算能力,属于基础题.16、【答案解析】利用导数的几何意义可求得函数在处的切线,再根据切线与圆存在公共点,利用圆心到直线的距离满足的条件列式求解即可.【题目详解】解:由条件得到 又所以函数在处的切线为,即圆方程整理可得:即有圆心且所以圆心到直线的距离,即.解得或,故答案为:【答案点睛】本题主要考查了导数的几何意义求解切线方程的问题,同时也考查了根据直线与圆的位置关系求解参数范围的问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【答案解析】

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2