收藏 分享(赏)

2023学年湖湘教育三新探索协作体高三一诊考试数学试卷(含解析).doc

上传人:sc****y 文档编号:23154 上传时间:2023-01-06 格式:DOC 页数:20 大小:2.07MB
下载 相关 举报
2023学年湖湘教育三新探索协作体高三一诊考试数学试卷(含解析).doc_第1页
第1页 / 共20页
2023学年湖湘教育三新探索协作体高三一诊考试数学试卷(含解析).doc_第2页
第2页 / 共20页
2023学年湖湘教育三新探索协作体高三一诊考试数学试卷(含解析).doc_第3页
第3页 / 共20页
2023学年湖湘教育三新探索协作体高三一诊考试数学试卷(含解析).doc_第4页
第4页 / 共20页
2023学年湖湘教育三新探索协作体高三一诊考试数学试卷(含解析).doc_第5页
第5页 / 共20页
2023学年湖湘教育三新探索协作体高三一诊考试数学试卷(含解析).doc_第6页
第6页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并

2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知命题:是“直线和直线互相垂直”的充要条件;命题:函数的最小值为4. 给出下列命题:;,其中真命题的个数为( )A1B2C3D42在中,角的对边分别为,若,且,则的面积为( )ABCD3已知函数,集合,则( )ABCD4已知函数,且),则“在上是单调函数”是“”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件5已知复数,则( )ABCD26设函数,若在上有且仅有5个零点,则的取值范围为( )ABCD7甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“

3、值”字的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到.已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是( )A甲B乙C丙D丁8小王因上班繁忙,来不及做午饭,所以叫了外卖.假设小王和外卖小哥都在12:0012:10之间随机到达小王所居住的楼下,则小王在楼下等候外卖小哥的时间不超过5分钟的概率是( )ABCD9设a,b都是不等于1的正数,则“”是“”的()A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件10已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为( )ABCD11已知数列是公比为的正

4、项等比数列,若、满足,则的最小值为( )ABCD12已知不同直线、与不同平面、,且,则下列说法中正确的是( )A若,则B若,则C若,则D若,则二、填空题:本题共4小题,每小题5分,共20分。13如图,椭圆:的离心率为,F是的右焦点,点P是上第一角限内任意一点,若,则的取值范围是_14关于函数有下列四个命题:函数在上是增函数;函数的图象关于中心对称;不存在斜率小于且与函数的图象相切的直线;函数的导函数不存在极小值.其中正确的命题有_.(写出所有正确命题的序号)15若点在直线上,则的值等于_ .16设、满足约束条件,若的最小值是,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算

5、步骤。17(12分)在平面直角坐标系xoy中,曲线C的方程为.以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)写出曲线C的极坐标方程,并求出直线l与曲线C的交点M,N的极坐标;(2)设P是椭圆上的动点,求面积的最大值.18(12分)在三棱柱中,四边形是菱形,点M、N分别是、的中点,且.(1)求证:平面平面;(2)求四棱锥的体积.19(12分)已知函数(1)当时,证明,在恒成立;(2)若在处取得极大值,求的取值范围.20(12分) 已知函数,()当时,求曲线在处的切线方程; ()求函数在上的最小值;()若函数,当时,的最大值为,求证:.21(12分)2019年入冬时节

6、,长春市民为了迎接2023年北京冬奥会,增强身体素质,积极开展冰上体育锻炼.现从速滑项目中随机选出100名参与者,并由专业的评估机构对他们的锻炼成果进行评估打分(满分为100分)并且认为评分不低于80分的参与者擅长冰上运动,得到如图所示的频率分布直方图:(1)求的值;(2)将选取的100名参与者的性别与是否擅长冰上运动进行统计,请将下列列联表补充完整,并判断能否在犯错误的概率在不超过0.01的前提下认为擅长冰上运动与性别有关系?擅长不擅长合计男性30女性50合计1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910

7、.828(,其中)22(10分)在锐角中,分别是角的对边,且(1)求角的大小;(2)求函数的值域2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】先由两直线垂直的条件判断出命题p的真假,由基本不等式判断命题q的真假,从而得出p,q的非命题的真假,继而判断复合命题的真假,可得出选项.【题目详解】已知对于命题,由得,所以命题为假命题;关于命题,函数,当时,当即时,取等号,当时,函数没有最小值,所以命题为假命题.所以和是真命题,所以为假命题,为假命题,为假命题,为真命题,所以真命题的个数

8、为1个.故选:A.【答案点睛】本题考查直线的垂直的判定和基本不等式的应用,以及复合命题的真假的判断,注意运用基本不等式时,满足所需的条件,属于基础题.2、C【答案解析】由,可得,化简利用余弦定理可得,解得即可得出三角形面积【题目详解】解:,且,化为:,解得故选:【答案点睛】本题考查了向量共线定理、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题3、C【答案解析】分别求解不等式得到集合,再利用集合的交集定义求解即可.【题目详解】,,故选C【答案点睛】本题主要考查了集合的基本运算,难度容易.4、C【答案解析】先求出复合函数在上是单调函数的充要条件,再看其和的包含关系,利用集合间包

9、含关系与充要条件之间的关系,判断正确答案.【题目详解】,且),由得或,即的定义域为或,(且) 令,其在单调递减,单调递增,在上是单调函数,其充要条件为即.故选:C.【答案点睛】本题考查了复合函数的单调性的判断问题,充要条件的判断,属于基础题.5、C【答案解析】根据复数模的性质即可求解.【题目详解】,故选:C【答案点睛】本题主要考查了复数模的性质,属于容易题.6、A【答案解析】由求出范围,结合正弦函数的图象零点特征,建立不等量关系,即可求解.【题目详解】当时,在上有且仅有5个零点,.故选:A.【答案点睛】本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题.7、A【答案解析】可采用假设法进

10、行讨论推理,即可得到结论.【题目详解】由题意,假设甲:我没有抓到是真的,乙:丙抓到了,则丙:丁抓到了是假的,丁:我没有抓到就是真的,与他们四人中只有一个人抓到是矛盾的;假设甲:我没有抓到是假的,那么丁:我没有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以断定值班人是甲.故选:A.【答案点睛】本题主要考查了合情推理及其应用,其中解答中合理采用假设法进行讨论推理是解答的关键,着重考查了推理与分析判断能力,属于基础题.8、C【答案解析】设出两人到达小王的时间,根据题意列出不等式组,利用几何概型计算公式进行求解即可.【题目详解】设小王和外卖小哥到达小王所居住的楼下的时间分别为,以12:

11、00点为开始算起,则有,在平面直角坐标系内,如图所示:图中阴影部分表示该不等式组的所表示的平面区域,所以小王在楼下等候外卖小哥的时间不超过5分钟的概率为:.故选:C【答案点睛】本题考查了几何概型中的面积型公式,考查了不等式组表示的平面区域,考查了数学运算能力.9、C【答案解析】根据对数函数以及指数函数的性质求解a,b的范围,再利用充分必要条件的定义判断即可【题目详解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分条件,故选C【答案点睛】本题考查必要条件、充分条件及充分必要条件的判断方法,考查指数,对数不等式的解法,是基础题10、C【答案解析】由题可推断出和都是直角三角形,设球心为

12、,要使三棱锥的体积最大,则需满足,结合几何关系和图形即可求解【题目详解】先画出图形,由球心到各点距离相等可得,故是直角三角形,设,则有,又,所以,当且仅当时,取最大值4,要使三棱锥体积最大,则需使高,此时,故选:C【答案点睛】本题考查由三棱锥外接球半径,半径与球心位置求解锥体体积最值问题,属于基础题11、B【答案解析】利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值【题目详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,可得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.当且时,的最小值为.故选:B

13、【答案点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题12、C【答案解析】根据空间中平行关系、垂直关系的相关判定和性质可依次判断各个选项得到结果.【题目详解】对于,若,则可能为平行或异面直线,错误;对于,若,则可能为平行、相交或异面直线,错误;对于,若,且,由面面垂直的判定定理可知,正确;对于,若,只有当垂直于的交线时才有,错误.故选:.【答案点睛】本题考查空间中线面关系、面面关系相关命题的辨析,关键是熟练掌握空间中的平行关系与垂直关系的相关命题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由于点在椭

14、圆上运动时,与轴的正方向的夹角在变,所以先设,又由,可知,从而可得,而点在椭圆上,所以将点的坐标代入椭圆方程中化简可得结果【题目详解】设,则,由,得,代入椭圆方程,得,化简得恒成立,由此得,即,故故答案为:【答案点睛】此题考查的是利用椭圆中相关两个点的关系求离心率,综合性强,属于难题 14、【答案解析】由单调性、对称性概念、导数的几何意义、导数与极值的关系进行判断【题目详解】函数的定义域是,由于,在上递增,函数在上是递增,正确;,函数的图象关于中心对称,正确;,时取等号,正确;,设,则,显然是即的极小值点,错误故答案为:.【答案点睛】本题考查函数的单调性、对称性,考查导数的几何意义、导数与极值,解题时按照相关概念判断即可,属于中档题15、【

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2