1、九年级(上)期末数学试卷一、选择题(本大题共有10小题,每小题3分,共30分,请选出一个符合题意的正确的选项填涂在答题纸上,不选、多选、错选均不给分)17的倒数是()A7B7CD2现在网购越来越多地成为人们的一种消费方式,在2014年的“双11”网上促销活动中天猫和淘宝的支付交易额突破57000 000 000元,将数字57000 000 000用科学记数法表示为()A5.7109B5.71010C0.571011D571093如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()ABCD4下列计算正确的是()Aa2+a2=a4B2aa=2C(ab)2=a2b2D(a2)
2、3=a55将一副直角三角尺如图放置,若AOD=20,则BOC的大小为()A140B160C170D1506一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A至少有1个球是黑球B至少有1个球是白球C至少有2个球是黑球D至少有2个球是白球7将抛物线y=x22x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()Ay=(x1)2+4By=(x4)2+4Cy=(x+2)2+6Dy=(x4)2+68如图,在直角O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中
3、AB处滑动到AB处,那么滑动杆的中点C所经过的路径是()A直线的一部分B圆的一部分C双曲线的一部分D抛物线的一部分9如图,在等腰ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与ABC的边相交于E、F两点设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是()ABCD10如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()来源:Zxxk.ComA6B7C8D9二、填空题(本大题共有6小题,每小题4分,共24分,请将答案填在答题纸上)11多项式a24因式分解的
4、结果是12使式子1+有意义的x的取值范围是132014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是cm14化简: =15已知如图所示的图形的面积为24,根据图中的条件,可列出方程:16取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1这个结论在数学上还没有得到证明但举例验证都是正确的例如:取自然数5最少经过下面5步运算可得1,即:5168421,如果自然数m最少经过7步运算可得到1,则所有符合条件的m的最小值为三、解答题(本大题共有8小题,共66分,请将答案写在答题纸
5、上,务必写出解答过程)17计算:23|2|cos4518解不等式,并把解在数轴上表示出来19研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续活动结果:摸球实验活动一共做了50次,统计结果如下表:球的颜色无记号有记号红色黄色红色黄色摸到的次数182822推测计算:由上述的摸球实验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?20如图,O的直径AB的长为10,弦AC的长为5,ACB的平分线交O于点D
6、(1)求的长(2)求弦BD的长21某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?22如图,已知点A(4,0),B(0,4),把一个直角三角尺DEF放在OAB内,使其斜边FD在线段AB上,三角尺可沿着线段AB上下滑动其中EFD=30,ED=2,点G为边FD的中点(1)求直线AB
7、的解析式;(2)如图1,当点D与点A重合时,求经过点G的反比例函数y=(k0)的解析式;(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解析式;如果不能,说明理由23如图1,在RtABC中,B=90,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将EDC绕点C按顺时针方向旋转,记旋转角为(1)问题发现当=0时, =;当=180时, =(2)拓展探究试判断:当0360时,的大小有无变化?请仅就图2的情形给出证明(3)问题解决当EDC旋转至A,D,E三点共线时,直接写出线段BD的长24如图,已知抛物线y=ax2+bx+c(a0)的
8、对称轴为直线x=1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=1上的一个动点,求使BPC为直角三角形的点P的坐标九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共有10小题,每小题3分,共30分,请选出一个符合题意的正确的选项填涂在答题纸上,不选、多选、错选均不给分)17的倒数是()A7B7CD【考点】倒数【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数【解答】解:
9、7的倒数是,故选:D【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键2现在网购越来越多地成为人们的一种消费方式,在2014年的“双11”网上促销活动中天猫和淘宝的支付交易额突破57000 000 000元,将数字57000 000 000用科学记数法表示为()A5.7109B5.71010C0.571011D57109【考点】科学记数法表示较大的数【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【解答】解:将5700
10、0000000用科学记数法表示为:5.71010故选:B【点评】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()ABCD【考点】简单组合体的三视图【专题】常规题型【分析】根据俯视图是从上面看得到的图形,可得答案【解答】解:从上面看外边是一个矩形,里面是一个圆,故选:C【点评】本题考查了简单组合体的三视图,俯视图是从上面看得到的图形4下列计算正确的是()Aa2+a2=a4B2aa=2C(ab)2=a2b2D(a2)3=a5【考点】幂的乘方
11、与积的乘方;合并同类项【分析】根据合并同类项的法则,同底数幂的乘法以及幂的乘方的知识求解即可求得答案【解答】解:A、a2+a2=2a2,故本选项错误;B、2aa=a,故本选项错误;C、(ab)2=a2b2,故本选项正确;D、(a2)3=a6,故本选项错误;故选:C【点评】本题考查了同底数幂的乘法,合并同类项,一定要记准法则才能做题5将一副直角三角尺如图放置,若AOD=20,则BOC的大小为()A140B160C170D150【考点】直角三角形的性质【分析】利用直角三角形的性质以及互余的关系,进而得出COA的度数,即可得出答案【解答】解:将一副直角三角尺如图放置,AOD=20,COA=9020=
12、70,BOC=90+70=160故选:B【点评】此题主要考查了直角三角形的性质,得出COA的度数是解题关键6一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A至少有1个球是黑球B至少有1个球是白球C至少有2个球是黑球D至少有2个球是白球【考点】随机事件【分析】由于只有2个白球,则从中任意摸出3个球中至少有1个球是黑球,于是根据必然事件的定义可判断A选项正确【解答】解:一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,至少有1个球是黑球是必然事件;至少有1个球是白球、至少有2个球是黑球和至少有2个球是
13、白球都是随机事件故选A【点评】本题考查了随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,7将抛物线y=x22x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()Ay=(x1)2+4By=(x4)2+4Cy=(x+2)2+6Dy=(x4)2+6【考点】二次函数图象与几何变换【分析】根据函数图象向上平移加,向右平移减,可得函数解析式【解答】解:将y=x22x+3化为顶点式,得y=(x1)2+2将抛物线y=x22x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的
14、解析式为y=(x4)2+4,故选:B【点评】本题考查了二次函数图象与几何变换,函数图象的平移规律是:左加右减,上加下减8如图,在直角O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到AB处,那么滑动杆的中点C所经过的路径是()A直线的一部分B圆的一部分C双曲线的一部分D抛物线的一部分【考点】轨迹;直角三角形斜边上的中线【分析】根据直角三角形斜边上的中线等于斜边的一半得到OC=AB=AB=OC,从而得出滑动杆的中点C所经过的路径是一段圆弧【解答】解:连接OC、OC,如图,AOB=90,C为AB中点,OC=AB=AB=OC,当端
15、点A沿直线AO向下滑动时,AB的中点C到O的距离始终为定长,滑动杆的中点C所经过的路径是一段圆弧故选B【点评】本题考查了轨迹,圆的定义与性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键9如图,在等腰ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与ABC的边相交于E、F两点设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是()ABCD【考点】动点问题的函数图象【专题】数形结合【分析】作ADBC于D,如图,设点F运动的速度为1,BD=m,根据等腰三角形的性质得B=C,BD=CD=m,当点F从点B运动到D时,如图1,利用正切定义即
16、可得到y=tanBt(0tm);当点F从点D运动到C时,如图2,利用正切定义可得y=tanCCF=tanBt+2mtanB(mt2m),即y与t的函数关系为两个一次函数关系式,于是可对四个选项进行判断【解答】解:作ADBC于D,如图,设点F运动的速度为1,BD=m,ABC为等腰三角形,B=C,BD=CD,当点F从点B运动到D时,如图1,在RtBEF中,tanB=,y=tanBt(0tm);当点F从点D运动到C时,如图2,在RtCEF中,tanC=,y=tanCCF=tanC(2mt)=tanBt+2mtanB(mt2m)故选B【点评】本题考查了动点问题的函数图象:利用三角函数关系得到两变量的函
17、数关系,再利用函数关系式画出对应的函数图象注意自变量的取值范围10如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A6B7C8D9【考点】扇形面积的计算【分析】由正方形的边长为3,可得弧BD的弧长为6,然后利用扇形的面积公式:S扇形DAB=,计算即可【解答】解:正方形的边长为3,弧BD的弧长=6,S扇形DAB=63=9故选D【点评】此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式S扇形DAB=二、填空题(本大题共有6小题,每小题4分,共24分,请将答案填在答题纸上)11多项式a24因式分解的结果是(
18、a+2)(a2)【考点】因式分解-运用公式法【分析】直接利用平方差公式分解因式得出即可【解答】解:a24=(a+2)(a2)故答案为:(a+2)(a2)【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键12使式子1+有意义的x的取值范围是x0【考点】二次根式有意义的条件【分析】根据被开方数大于等于0列式即可【解答】解:由题意得,x0故答案为:x0【点评】本题考查的知识点为:二次根式的被开方数是非负数132014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是168cm【考点】众数【分析】根据众数的定义找出
19、这组数据中出现次数最多的数即可得出答案【解答】解:168出现了3次,出现的次数最多,则她们身高的众数是168cm;故答案为:168;【点评】此题考查了众数众数是一组数据中出现次数最多的数,属于基础题,难度不大14化简: =【考点】分式的加减法【专题】计算题;压轴题【分析】先将x24分解为(x+2)(x2),然后通分,再进行计算【解答】解: =【点评】本题考查了分式的计算和化简解决这类题关键是把握好通分与约分分式加减的本质是通分,乘除的本质是约分15已知如图所示的图形的面积为24,根据图中的条件,可列出方程:(x+1)2=25【考点】由实际问题抽象出一元二次方程【专题】几何图形问题【分析】此图形
20、的面积等于两个正方形的面积的差,据此可以列出方程【解答】解:根据题意得:(x+1)21=24,即:(x+1)2=25故答案为:(x+1)2=25【点评】本题考查了由实际问题抽象出一元二次方程,解题的关键是明确题目中的不规则图形的面积计算方法16取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1这个结论在数学上还没有得到证明但举例验证都是正确的例如:取自然数5最少经过下面5步运算可得1,即:5168421,如果自然数m最少经过7步运算可得到1,则所有符合条件的m的最小值为3【考点】规律型:数字的变化类【分析】利用列举法,尝试最小的几个非0自然数,
21、再结合“自然数5最少经过5步运算可得1”,即可得出结论【解答】解:利用列举法进行尝试,1(不用运算);21(1步运算);3105,结合已知给定案例可知,5再经过5步运算可得1,故3要经过7步运算可得1故答案为:3【点评】本题考查了数字的变换类,解题的关键是:利用列举法,尝试几个最小的非0自然数三、解答题(本大题共有8小题,共66分,请将答案写在答题纸上,务必写出解答过程)17计算:23|2|cos45【考点】实数的运算;特殊角的三角函数值【专题】计算题;实数【分析】原式第一项利用算术平方根定义计算,第二项利用乘方的意义,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果【解答】解:原式=
22、282=22【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键18解不等式,并把解在数轴上表示出来【考点】解一元一次不等式;不等式的性质;在数轴上表示不等式的解集【专题】计算题;数形结合【分析】根据不等式的性质得到3(x1)1+x,推出2x4,即可求出不等式的解集【解答】解:去分母,得3(x1)1+x,整理,得2x4,x2在数轴上表示为:【点评】本题主要考查对解一元一次不等式,在数轴上表示不等式的解集,不等式的性质等知识点的理解和掌握,能根据不等式的性质正确解不等式是解此题的关键19研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先
23、从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续活动结果:摸球实验活动一共做了50次,统计结果如下表:球的颜色无记号有记号红色黄色红色黄色摸到的次数182822推测计算:由上述的摸球实验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?【考点】模拟实验;利用频率估计概率【专题】应用题;压轴题【分析】(1)根据表格数据可以得到50次摸球实验活动中,出现红球20次,黄球30次,由此即可求出盒中红球、黄球各占总球数的百分比;(2)由题意可知50次摸球实验活动中,出现有记号的球4次,由此可以求出总球数,然后
24、利用(1)的结论即可求出盒中红球【解答】解:(1)由题意可知,50次摸球实验活动中,出现红球20次,黄球30次,红球所占百分比为2050=40%,黄球所占百分比为3050=60%,答:红球占40%,黄球占60%;(2)由题意可知,50次摸球实验活动中,出现有记号的球4次,总球数为8=100,红球数为10040%=40,答:盒中红球有40个【点评】此题主要考查了利用频率估计概率的问题,首先利用模拟实验得到盒中红球、黄球各占总球数的百分比,然后利用百分比即可求出盒中红球个数20如图,O的直径AB的长为10,弦AC的长为5,ACB的平分线交O于点D(1)求的长(2)求弦BD的长【考点】圆周角定理;含
25、30度角的直角三角形;等腰直角三角形;弧长的计算【分析】(1)首先根据AB是O的直径,可得ACB=ADB=90,然后在RtABC中,求出BAC的度数,即可求出BOC的度数;最后根据弧长公式,求出的长即可(2)首先根据CD平分ACB,可得ACD=BCD;然后根据圆周角定理,可得AOD=BOD,所以AD=BD,ABD=BAD=45;最后在RtABD中,求出弦BD的长是多少即可【解答】解:(1)如图,连接OC,OD,AB是O的直径,ACB=ADB=90,在RtABC中,BAC=60,BOC=2BAC=260=120,的长=(2)CD平分ACB,ACD=BCD,AOD=BOD,AD=BD,ABD=BA
26、D=45,在RtABD中,BD=ABsin45=10【点评】(1)此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,要熟练掌握(2)此题还考查了含30度角的直角三角形,以及等腰直角三角形的性质和应用,要熟练掌握(3)此题还考查了弧长的求法,要熟练掌握,解答此题的关键是要明确:弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R)在弧长的计算公式中,n是表示1的圆心角的倍数,n和180都不要带单位21某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第
27、一批购进量的2倍,但单价贵了10元(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?【考点】分式方程的应用;一元一次不等式的应用【分析】(1)可设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,根据第二批这种衬衫单价贵了10元,列出方程求解即可;(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答【解答】解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有+10=,解得x=120,经检验,x=120是原方程
28、的解,且符合题意答:该商家购进的第一批衬衫是120件(2)3x=3120=360,设每件衬衫的标价y元,依题意有(36050)y+500.8y(13200+28800)(1+25%),解得y150答:每件衬衫的标价至少是150元【点评】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键22如图,已知点A(4,0),B(0,4),把一个直角三角尺DEF放在OAB内,使其斜边FD在线段AB上,三角尺可沿着线段AB上下滑动其中EFD=30,ED=2,点G为边FD的中点(1)求直线AB的解析式;(2)如图1,当点D与点A重合时,求经过点G的反比例函数y=(k0)的解析式;(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解