收藏 分享(赏)

2023届陕西省安康市汉滨高中高三第二次模拟考试数学试卷(含解析).doc

上传人:la****1 文档编号:28064 上传时间:2023-01-06 格式:DOC 页数:20 大小:1.72MB
下载 相关 举报
2023届陕西省安康市汉滨高中高三第二次模拟考试数学试卷(含解析).doc_第1页
第1页 / 共20页
2023届陕西省安康市汉滨高中高三第二次模拟考试数学试卷(含解析).doc_第2页
第2页 / 共20页
2023届陕西省安康市汉滨高中高三第二次模拟考试数学试卷(含解析).doc_第3页
第3页 / 共20页
2023届陕西省安康市汉滨高中高三第二次模拟考试数学试卷(含解析).doc_第4页
第4页 / 共20页
2023届陕西省安康市汉滨高中高三第二次模拟考试数学试卷(含解析).doc_第5页
第5页 / 共20页
2023届陕西省安康市汉滨高中高三第二次模拟考试数学试卷(含解析).doc_第6页
第6页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设函数若关于的方程有四个实数解,其中,则的取值范围是( )ABCD2已知符号函数sgnxf(x)是定义在R上的减函数,

2、g(x)f(x)f(ax)(a1),则( )Asgng(x)sgn xBsgng(x)sgnxCsgng(x)sgnf(x)Dsgng(x)sgnf(x)3已知圆截直线所得线段的长度是,则圆与圆的位置关系是( )A内切B相交C外切D相离4总体由编号01,,02,19,20的20个个体组成利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为7816657208026314070243699728019832049234493582003623486969387481A08B07C02D015函数在的图象大致为( )

3、ABCD6若为虚数单位,则复数,则在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限7有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为cm,高度为cm,现往里面装直径为cm的球,在能盖住盖子的情况下,最多能装( )(附:)A个B个C个D个8已知函数,不等式对恒成立,则的取值范围为( )ABCD9如图,在平行四边形中,为对角线的交点,点为平行四边形外一点,且,则( )ABCD10已知为等腰直角三角形,为所在平面内一点,且,则( )ABCD11已知正三角形的边长为2,为边的中点,、分别为边、上的动点,并满足,则的取值范围是( )ABCD12已知我市某居民小区户主人数和户主对户

4、型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A240,18B200,20C240,20D200,18二、填空题:本题共4小题,每小题5分,共20分。13已知二项式的展开式中各项的二项式系数和为512,其展开式中第四项的系数_14学校艺术节对同一类的,四件参赛作品,只评一件一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“或作品获得一等奖”; 乙说:“作品获得一等奖”;丙说:“,两项作品未获得一等奖”; 丁说:“作品获得一等奖”若这四位同学中有且只有两位说的话

5、是对的,则获得一等奖的作品是_.15在四面体中, 分别是的中点则下述结论:四面体的体积为;异面直线所成角的正弦值为;四面体外接球的表面积为;若用一个与直线垂直,且与四面体的每个面都相交的平面去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为其中正确的有_(填写所有正确结论的编号)16工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)证明:函数在上存在唯一的零点;(2)若函数在区间上的最小

6、值为1,求的值.18(12分)某商场以分期付款方式销售某种商品,根据以往资料统计,顾客购买该商品选择分期付款的期数的分布列为:2340.4其中,()求购买该商品的3位顾客中,恰有2位选择分2期付款的概率;()商场销售一件该商品,若顾客选择分2期付款,则商场获得利润l00元,若顾客选择分3期付款,则商场获得利润150元,若顾客选择分4期付款,则商场获得利润200元.商场销售两件该商品所获的利润记为(单位:元)()求的分布列;()若,求的数学期望的最大值.19(12分)设数列,其前项和,又单调递增的等比数列, , .()求数列,的通项公式;()若 ,求数列的前n项和,并求证:.20(12分)已知关

7、于的不等式解集为().(1)求正数的值;(2)设,且,求证:.21(12分)已知椭圆的短轴长为,离心率,其右焦点为.(1)求椭圆的方程;(2)过作夹角为的两条直线分别交椭圆于和,求的取值范围.22(10分)已知椭圆与x轴负半轴交于,离心率.(1)求椭圆C的方程;(2)设直线与椭圆C交于两点,连接AM,AN并延长交直线x=4于两点,若,直线MN是否恒过定点,如果是,请求出定点坐标,如果不是,请说明理由.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】画出函数图像,根据图像知:,计算

8、得到答案.【题目详解】,画出函数图像,如图所示:根据图像知:,故,且.故.故选:.【答案点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.2、A【答案解析】根据符号函数的解析式,结合f(x)的单调性分析即可得解.【题目详解】根据题意,g(x)f(x)f(ax),而f(x)是R上的减函数,当x0时,xax,则有f(x)f(ax),则g(x)f(x)f(ax)0,此时sgng ( x)1,当x0时,xax,则有f(x)f(ax),则g(x)f(x)f(ax)0,此时sgng ( x)0,当x0时,xax,则有f(x)f(ax),则g(x)f(x)f(ax)0,此

9、时sgng ( x)1,综合有:sgng ( x)sgn(x);故选:A【答案点睛】此题考查函数新定义问题,涉及函数单调性辨析,关键在于读懂定义,根据自变量的取值范围分类讨论.3、B【答案解析】化简圆到直线的距离 ,又 两圆相交. 选B4、D【答案解析】从第一行的第5列和第6列起由左向右读数划去大于20的数分别为:08,02,14,07,01,所以第5个个体是01,选D.考点:此题主要考查抽样方法的概念、抽样方法中随机数表法,考查学习能力和运用能力.5、C【答案解析】先根据函数奇偶性排除B,再根据函数极值排除A;结合特殊值即可排除D,即可得解.【题目详解】函数,则,所以为奇函数,排除B选项;当

10、时,所以排除A选项;当时,排除D选项;综上可知,C为正确选项,故选:C.【答案点睛】本题考查根据函数解析式判断函数图像,注意奇偶性、单调性、极值与特殊值的使用,属于基础题.6、B【答案解析】首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解.【题目详解】,则在复平面内对应的点的坐标为,位于第二象限.故选:B【答案点睛】本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.7、C【答案解析】计算球心连线形成的正四面体相对棱的距离为cm,得到最上层球面上的点距离桶底最远为cm,得到不等式,计算得到答案.【题目详解】由题意,若要装更多的球,需要让球和铁皮桶侧

11、面相切,且相邻四个球两两相切,这样,相邻的四个球的球心连线构成棱长为cm的正面体,易求正四面体相对棱的距离为cm,每装两个球称为“一层”,这样装层球,则最上层球面上的点距离桶底最远为cm,若想要盖上盖子,则需要满足,解得,所以最多可以装层球,即最多可以装个球故选:【答案点睛】本题考查了圆柱和球的综合问题,意在考查学生的空间想象能力和计算能力.8、C【答案解析】确定函数为奇函数,且单调递减,不等式转化为,利用双勾函数单调性求最值得到答案.【题目详解】是奇函数,易知均为减函数,故且在上单调递减,不等式,即,结合函数的单调性可得,即,设,故单调递减,故,当,即时取最大值,所以.故选:.【答案点睛】本

12、题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.9、D【答案解析】连接,根据题目,证明出四边形为平行四边形,然后,利用向量的线性运算即可求出答案【题目详解】连接,由,知,四边形为平行四边形,可得四边形为平行四边形,所以.【答案点睛】本题考查向量的线性运算问题,属于基础题10、D【答案解析】以AB,AC分别为x轴和y轴建立坐标系,结合向量的坐标运算,可求得点的坐标,进而求得,由平面向量的数量积可得答案.【题目详解】如图建系,则,由,易得,则.故选:D【答案点睛】本题考查平面向量基本定理的运用、数量积的运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.1

13、1、A【答案解析】建立平面直角坐标系,求出直线,设出点,通过,找出与的关系通过数量积的坐标表示,将表示成与的关系式,消元,转化成或的二次函数,利用二次函数的相关知识,求出其值域,即为的取值范围【题目详解】以D为原点,BC所在直线为轴,AD所在直线为轴建系,设,则直线 , 设点, 所以 由得 ,即 ,所以,由及,解得,由二次函数的图像知,所以的取值范围是故选A【答案点睛】本题主要考查解析法在向量中的应用,以及转化与化归思想的运用12、A【答案解析】利用统计图结合分层抽样性质能求出样本容量,利用条形图能求出抽取的户主对四居室满意的人数【题目详解】样本容量为:(150+250+400)30%240,

14、抽取的户主对四居室满意的人数为:故选A【答案点睛】本题考查样本容量和抽取的户主对四居室满意的人数的求法,是基础题,解题时要认真审题,注意统计图的性质的合理运用二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】先令可得其展开式各项系数的和,又由题意得,解得,进而可得其展开式的通项,即可得答案.【题目详解】令,则有,解得,则二项式的展开式的通项为,令,则其展开式中的第4项的系数为,故答案为:【答案点睛】此题考查二项式定理的应用,解题时需要区分展开式中各项系数的和与各二项式系数和,属于基础题.14、B【答案解析】首先根据“学校艺术节对四件参赛作品只评一件一等奖”,故假设分别为一等奖,然后判断甲、乙、丙、丁四位同学的说法的正确性,即可得出

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 实用范文 > 工作计划

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2