1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点
2、为,则在此圆柱侧面上,从到的路径中,最短路径的长度为( )ABCD22复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于( )ABCD3为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是( )A甲的数据分析素养优于乙B乙的数据分析素养优于数学建模素养C甲的六大素养整体水平优于乙D甲的六大素养中数学运算最强4关于的不等式的解集是,则关于的不等式的解集是( )ABCD5运行如图所示的程序框图,若输出的的值为99,则判断框中可以填( )ABCD6若函数
3、的图象上两点,关于直线的对称点在的图象上,则的取值范围是( )ABCD7已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,且,则该双曲线的渐近线方程为( )ABCD8根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是( )A至少有一个样本点落在回归直线上B若所有样本点都在回归直线上,则变量同的相关系数为1C对所有的解释变量(),的值一定与有误差D若回归直线的斜率,则变量x与y正相关9正方形的边长为,是正方形内部(不包括正方形的边)一点,且,则的最小值为( )ABCD10幻方最早起源于我国,由正整数1,2,3,这个数填入方格中,使得每行、每列、每条对角线上的数的和相
4、等,这个正方形数阵就叫阶幻方定义为阶幻方对角线上所有数的和,如,则( )A55B500C505D505011函数()的图像可以是( )ABCD12已知平面平面,且是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为( )AB16CD二、填空题:本题共4小题,每小题5分,共20分。13在如图所示的三角形数阵中,用表示第行第个数,已知,且当时,每行中的其他各数均等于其“肩膀”上的两个数之和,即,若,则正整数的最小值为_.14设是公差不为0的等差数列的前项和,且,则_.15在中,、的坐标分别为,且满足,为坐标原点,若点的坐标为,则的取值范围为_.16已知函数的定义域为R,导函数为,
5、若,且,则满足的x的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)()证明: ;()证明:();()证明:.18(12分)等差数列的前项和为,已知,(1)求数列的通项公式;(2)设数列的前项和为,求使成立的的最小值19(12分)已知函数()若,求曲线在点处的切线方程;()若在上恒成立,求实数的取值范围;()若数列的前项和,求证:数列的前项和.20(12分)已知函数.(1)求的单调区间;(2)讨论零点的个数.21(12分)已知数列的前项和为,且点在函数的图像上;(1)求数列的通项公式;(2)设数列满足:,求的通项公式;(3)在第(2)问的条件下,若对于
6、任意的,不等式恒成立,求实数的取值范围;22(10分)已知函数f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)对任意,都有恒成立,求实数a的取值范围;(3)证明:对一切,都有成立2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【题目详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开
7、图平铺,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.2、A【答案解析】根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.【题目详解】由于复数对应复平面上的点,则,因此,.故选:A.【答案点睛】本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于
8、基础题.3、D【答案解析】根据所给的雷达图逐个选项分析即可.【题目详解】对于A,甲的数据分析素养为100分,乙的数据分析素养为80分,故甲的数据分析素养优于乙,故A正确;对于B,乙的数据分析素养为80分,数学建模素养为60分,故乙的数据分析素养优于数学建模素养,故B正确;对于C,甲的六大素养整体水平平均得分为,乙的六大素养整体水平均得分为,故C正确;对于D,甲的六大素养中数学运算为80分,不是最强的,故D错误;故选:D【答案点睛】本题考查了样本数据的特征、平均数的计算,考查了学生的数据处理能力,属于基础题.4、A【答案解析】由的解集,可知及,进而可求出方程的解,从而可求出的解集.【题目详解】由
9、的解集为,可知且,令,解得,因为,所以的解集为,故选:A.【答案点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.5、C【答案解析】模拟执行程序框图,即可容易求得结果.【题目详解】运行该程序:第一次,;第二次,;第三次,;第九十八次,;第九十九次,此时要输出的值为99.此时.故选:C.【答案点睛】本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题.6、D【答案解析】由题可知,可转化为曲线与有两个公共点,可转化为方程有两解,构造函数,利用导数研究函数单调性,分析即得解【题目详解】函数的图象上两点,关于直线的对称点
10、在上,即曲线与有两个公共点,即方程有两解,即有两解,令,则,则当时,;当时,故时取得极大值,也即为最大值,当时,;当时,所以满足条件故选:D【答案点睛】本题考查了利用导数研究函数的零点,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.7、D【答案解析】根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程.【题目详解】如图所示:因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以渐近线方程为.故选:D.【答案点睛】本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半.8、D【答
11、案解析】对每一个选项逐一分析判断得解.【题目详解】回归直线必过样本数据中心点,但样本点可能全部不在回归直线上故A错误;所有样本点都在回归直线上,则变量间的相关系数为,故B错误;若所有的样本点都在回归直线上,则的值与相等,故C错误;相关系数r与符号相同,若回归直线的斜率,则,样本点分布应从左到右是上升的,则变量x与y正相关,故D正确故选D【答案点睛】本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.9、C【答案解析】分别以直线为轴,直线为轴建立平面直角坐标系,设,根据,可求,而,化简求解.【题目详解】解:建立以为原点,以直线为轴,直线为轴的平面直角坐标系.设,则,
12、由,即,得.所以=,所以当时,的最小值为.故选:C.【答案点睛】本题考查向量的数量积的坐标表示,属于基础题.10、C【答案解析】因为幻方的每行、每列、每条对角线上的数的和相等,可得,即得解.【题目详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以阶幻方对角线上数的和就等于每行(或每列)的数的和,又阶幻方有行(或列),因此,于是故选:C【答案点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.11、B【答案解析】根据,可排除,然后采用导数,判断原函数的单调性,可得结果.【题目详解】由题可知:,所以当时,又,令,则令,则所以函数在单调递减在单调递增,故选:B【答案点睛
13、】本题考查函数的图像,可从以下指标进行观察:(1)定义域;(2)奇偶性;(3)特殊值;(4)单调性;(5)值域,属基础题.12、C【答案解析】根据与平面所成的角相等,判断出,建立平面直角坐标系,求得点的轨迹方程,由此求得点的轨迹长度.【题目详解】由于平面平面,且交线为,所以平面,平面.所以和分别是直线与平面所成的角,所以,所以,即,所以.以为原点建立平面直角坐标系如下图所示,则,设(点在第一象限内),由得,即,化简得,由于点在第一象限内,所以点的轨迹是以为圆心,半径为的圆在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以点的轨迹长度为.故选:C【答案点睛】本小题主要考查线面角的概念和
14、运用,考查动点轨迹方程的求法,考查空间想象能力和逻辑推理能力,考查数形结合的数学思想方法,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、2023【答案解析】根据条件先求出数列的通项,利用累加法进行求解即可【题目详解】,下面求数列的通项,由题意知,数列是递增数列,且,的最小值为.故答案为:.【答案点睛】本题主要考查归纳推理的应用,结合数列的性质求出数列的通项是解决本题的关键综合性较强,属于难题14、18【答案解析】先由,可得,再结合等差数列的前项和公式求解即可.【题目详解】解:因为,所以,.故答案为:18.【答案点睛】本题考查了等差数列基本量的运算,重点考查了等差数列的前项和公式,属基础题.15、【答案解析】由正弦定理可得点在曲线上,设,则,将代入可得,利用二次函数的性质可得范围.【题目详解】解:由正弦定理得,则点在曲线上,设,则,又,因为,则,