收藏 分享(赏)

【北师大】六数(下册)知识点归纳8页.docx

上传人:a****2 文档编号:2814024 上传时间:2024-01-03 格式:DOCX 页数:8 大小:74.42KB
下载 相关 举报
【北师大】六数(下册)知识点归纳8页.docx_第1页
第1页 / 共8页
【北师大】六数(下册)知识点归纳8页.docx_第2页
第2页 / 共8页
【北师大】六数(下册)知识点归纳8页.docx_第3页
第3页 / 共8页
【北师大】六数(下册)知识点归纳8页.docx_第4页
第4页 / 共8页
【北师大】六数(下册)知识点归纳8页.docx_第5页
第5页 / 共8页
【北师大】六数(下册)知识点归纳8页.docx_第6页
第6页 / 共8页
亲,该文档总共8页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、添加微信:car4900,免费领小学资料北师大版小学数学六年级(下册)知识点第一单元、圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。(2)两个底面间的距离叫做圆柱的高。(3)圆柱有无数条高,且高的长度都相等。(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。(2)圆锥的侧面是一个曲面。(3)圆锥只有一条高。(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高

2、线切割后的切面是等腰三角形。4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。圆柱的侧面积底面周长高,用字母表示为:S侧Ch。圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧dh;(3)已知底面半径和高,求侧面积,可运用公式:S侧2rh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=dh+d2/2或S表=2rh+2r2圆柱表面积的计算方法的特殊应

3、用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。5、圆柱的体积:一个圆柱所占空间的大小。6、圆柱体积公式的推导: 复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。所以圆的面积=半径半径=半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变

4、,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积高,也就等于圆柱的体积。因此,圆柱的体积底面积高如果用V表示圆柱的体积,S表示底面积,h表示高,那么VSh 。例题:填空:圆柱体积公式推导过程是利用(转化)的数学思想,在此过程中(形状)变了,(体积)没变。拼成图形的高于圆柱的(高)相等,他们的底面积(相等)所以圆柱的体积公式为(底面积高)圆柱体积公式的应用:(1)计算圆柱体积时,如果题中给出了底面积和高,可用公式:VSh。(2)已知圆柱的底面半径和高,求体积,可用公式:Vr2h;(3)已知圆柱的底面直径和高,求体积,可用公式:V(

5、d/2)2h;(4)已知圆柱的底面周长和高,求体积,可用公式:V(C/2)2h;圆柱形容器的容积底面积高,用字母表示是VSh。6、圆柱形容器公式的应用与圆柱体积公式的应用计算方法相同。7、圆锥的体积:一个圆锥所占空间的大小。圆锥的体积1/3底面积高如果用V表示圆锥的体积,S表示底面积,h表示高,则字母公式为:1/3Sh圆锥体积公式的应用:(1)求圆锥体积时,如果题中给出底面积和高这两个条件,可以直接运用“v= 1/3Sh”这一公式。(2)求圆锥体积时,如果题中给出底面半径和高这两个条件,可以运用1/3rh(3)求圆锥体积时,如果题中给出底面直径和高这两个条件,可以运用1/3(d/2)h(4)求

6、圆锥体积时,如果题中给出底面周长和高这两个条件,可以运用1/3(c/2r)h补充复习五年级下册知识:1、体积:物体所占空间的大小叫作物体的体积。容积:容器所能容纳物体的体积叫做物体的容积。2、常用单位:体积单位:米3(m3) 分米3(dm3)厘米3(cm3)容积单位:升(L) 毫升(ml)补充知识点:冰箱的容积用“升”作单位;我们饮用的自来水用“立方米”作单位。单位换算:(相邻单位之间的进率为1000)(小单位化成大单位要除以进率,大单位化成小单位要乘以进率。可以概括为:小化大除一下,大化小乘一下)1米31000分米31分米31000厘米31升1000毫升 1升1分米3 1毫升1厘米3单名数与

7、复名数之间的互化:单名数:由一个数和一个单位名称组成的名数叫做单名数。复名数:由两个或两个以上的数及单位名称组成的名数叫做复名数。复名数化为单名数:8米320分米38020分米3=8.20米3单名数化为复名数:3800毫升=3升800毫升 25.7立方分米=25立方分米700立方厘米第二单元、比例1、 比例:表示两个比相等的式子叫做比例。2、 比例中各部分的名称组成比例的四个数,叫做比例的项;两端的两项叫做比例的外项;中间的两项叫做比例的内项。3、 比例的基本性质在比例里,两个外项的积等于两个外项的积。4、 判断两个比能否组成比例的方法(1) 求比值;(2) 化简比;(3) 比例的基本性质5、

8、 解比例的方法根据比例的基本性质解比例。先把比例写成两个外项的积的等于两个内项的积的形式(即方程),再通过方程求未知项的值。如x:6=2:8,可以先写成8X=26 ,再解方程。6、 比例尺图上距离和实际距离的比叫作这幅图的比例尺。比例尺是一个最简单的整数比,它没有计量单位,也不能是一个具体的数。比例尺=图上距离实际距离;图上距离=实际距离比例尺;实际距离=图上距离比例尺7、 比例尺的分类:比例尺根据实际距离是缩小还是扩大,分为缩小比例尺和放大比例尺。根据表现形式的不同,比例尺还可分为线段比例尺和数值比例尺。8、 已知比例尺和图上距离求实际距离,可以根据比例尺的意义用图上距离直接乘(除以)缩小(

9、放大)的倍数。也可以用除法计算,即图上距离比例尺实际距离。一定注意结果要换算成合适的单位。9、 前项为1的比例尺即缩小比例尺,就是把实际距离缩小到原来的几分之一画在图上,所以求图上距离可以用实际距离除以缩小的倍数。也可以直接用实际距离乘比例尺。一定注意单位的换算。10、 求比例尺就是求图上距离和实际距离的比,单位不同要换算成统一单位后再进行计算。11、 根据比例尺画图时,要先根据实际距离与纸张的大小确定出平面图的比例尺,再根据比例尺求出图上距离,根据图上距离即可以画出相应的平面图,最后再在平面图上标明比例尺就可以了。12、 图形的放大和缩小:按一定的比例把图形放大或缩小,是把图形的各边放大或缩

10、小。图中的各边与实际中相对应的各边的比相等。这样放大或缩小后的图形与原图形的形状一样,不会改变。第三单元、图形的运动本册的图形变换知识在原来基础上进一步加深,要求能在方格纸上画出平移、旋转、轴对称后的图形,具体:第一种旋转:要说明绕哪个点,顺时针还是逆时针,旋转多少度(90度、180度、270度)。例如:将图形B绕点O顺时针/逆时针旋转90得到图形C;绕中心点旋转的方向:顺时针:即顺着钟表时针走的方向,从上往右走,再往下,最后向上。逆时针:和顺时针的方向相反,从上往左走,再往下,最后向上。第二种平移:要说明向什么方向(上、下、左、右)平移几个。例如:将图形A向上/下/左/右平移4格得到图形B;

11、第三种作对称图形:要说明是关于哪条直线作哪个图形的对称图形。例如:以直线MN为对称轴,作图形C的轴对称图形D。数学好玩1、神奇的莫比乌斯带2、用“数对”确定位置:先横向观察,在第几位就在小括号里先写几,再点上逗号;然后再纵向观察,在第几位,就在小括号里面写上几。例如:小青的位置在第三组,第二个座位,用数对表示为(3,2)。2、根据数对说出相应的实际位置:例如:某个同学在(5,6)这个位置,他的实际位置是,班上(从左往右数)第五组第六个座位。第四单元、正比例和反比例1、变化的量生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。2、正比例的意义:两种相关联的量,一种量变化,另一种量也

12、随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以表示为:=k(一定)。3、应用正比例的意义判断两种量是否成正比例:有些相关联的量,虽然也是一种量随着另一种量的变化而变化,但它们相对应的数的比值不一定,就不成正比例,如被减数与差,正方形的面积与边长等。4、正比例的图像是一条直线。5、反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。如果用字母x和y表示两种相关联的量,用k表示它们的乘积,反比例的关系式可以表示为:xy=k(一定)。6、判断两个量是不是成反比例:要先想这两个量是不是相关联的量;再运用数量关系式进行判断,看这两个量的积是否一定;最后作出结论。7、当两个变量成反比例关系时,所绘成的图像是一条光滑曲线。8、一幅图放大或缩小,只有按照相同的比来画,画的图才像。添加微信:car4900,免费领小学资料

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考研资料 > 公开课真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2