1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和
2、劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有( )种.A408B120C156D2402函数,则“的图象关于轴对称”是“是奇函数”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件3已知数列中,(),则等于( )ABCD24已知双曲线的左、右焦点分别为、,抛物线与双曲线有相同的焦点.设为抛物线与双曲线的一个交点,且,则双曲线的离心率为( )A或B或C或D或5设集合,则( )ABCD6已知的值域为
3、,当正数a,b满足时,则的最小值为( )AB5CD97已知双曲线的一条渐近线方程为,则双曲线的离心率为( )ABCD8已知实数,满足,则的最大值等于( )A2BC4D89已知非零向量、,若且,则向量在向量方向上的投影为( )ABCD10设,则的大小关系是( )ABCD11已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是( )ABCD12已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若则该双曲线的离心率为A2B3CD二、填空题:本题共4小题,每小题5分,共20分。13已知复数,且满足(其中为虚数单位),则_.14已知,是平面向量,是单位向量.若,且,则的取值范围
4、是_.15已知函数,若,则的取值范围是_16曲线f(x)=(x2 +x)lnx在点(1,f(1)处的切线方程为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,曲线(为参数),以坐标原点为极点,轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的普通方程;(2)若P,Q分别为曲线,上的动点,求的最大值.18(12分)已知函数(1)若,求证:(2)若,恒有,求实数的取值范围.19(12分)已知函数.其中是自然对数的底数.(1)求函数在点处的切线方程;(2)若不等式对任意的恒成立,求实数的取值范围.20
5、(12分)在直角坐标系中,已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)若射线的极坐标方程为().设与相交于点,与相交于点,求.21(12分)已知函数.()当时,求不等式的解集;()若存在满足不等式,求实数的取值范围.22(10分)对于非负整数集合(非空),若对任意,或者,或者,则称为一个好集合以下记为的元素个数(1)给出所有的元素均小于的好集合(给出结论即可)(2)求出所有满足的好集合(同时说明理由)(3)若好集合满足,求证:中存在元素,使得中所有元素均为的整数倍2023学年模拟测试卷参
6、考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】利用间接法求解,首先对6门课程全排列,减去“乐”排在第一节的情况,再减去“射”和“御”两门课程相邻的情况,最后还需加上“乐”排在第一节,且“射”和“御”两门课程相邻的情况;【题目详解】解:根据题意,首先不做任何考虑直接全排列则有(种),当“乐”排在第一节有(种),当“射”和“御”两门课程相邻时有(种),当“乐”排在第一节,且“射”和“御”两门课程相邻时有(种),则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有(种),故选:【答案点睛】本题考查
7、排列、组合的应用,注意“乐”的排列对“射”和“御”两门课程相邻的影响,属于中档题2、B【答案解析】根据函数奇偶性的性质,结合充分条件和必要条件的定义进行判断即可【题目详解】设,若函数是上的奇函数,则,所以,函数的图象关于轴对称.所以,“是奇函数”“的图象关于轴对称”;若函数是上的偶函数,则,所以,函数的图象关于轴对称.所以,“的图象关于轴对称”“是奇函数”.因此,“的图象关于轴对称”是“是奇函数”的必要不充分条件.故选:B.【答案点睛】本题主要考查充分条件和必要条件的判断,结合函数奇偶性的性质判断是解决本题的关键,考查推理能力,属于中等题.3、A【答案解析】分别代值计算可得,观察可得数列是以3
8、为周期的周期数列,问题得以解决.【题目详解】解:,(),数列是以3为周期的周期数列,故选:A.【答案点睛】本题考查数列的周期性和运用:求数列中的项,考查运算能力,属于基础题.4、D【答案解析】设,根据和抛物线性质得出,再根据双曲线性质得出,最后根据余弦定理列方程得出、间的关系,从而可得出离心率【题目详解】过分别向轴和抛物线的准线作垂线,垂足分别为、,不妨设,则,为双曲线上的点,则,即,得,又,在中,由余弦定理可得,整理得,即,解得或.故选:D.【答案点睛】本题考查了双曲线离心率的求解,涉及双曲线和抛物线的简单性质,考查运算求解能力,属于中档题5、C【答案解析】解对数不等式求得集合,由此求得两个
9、集合的交集.【题目详解】由,解得,故.依题意,所以.故选:C【答案点睛】本小题主要考查对数不等式的解法,考查集合交集的概念和运算,属于基础题.6、A【答案解析】利用的值域为,求出m,再变形,利用1的代换,即可求出的最小值.【题目详解】解:的值域为,当且仅当时取等号,的最小值为.故选:A.【答案点睛】本题主要考查了对数复合函数的值域运用,同时也考查了基本不等式中“1的运用”,属于中档题.7、B【答案解析】由题意得出的值,进而利用离心率公式可求得该双曲线的离心率.【题目详解】双曲线的渐近线方程为,由题意可得,因此,该双曲线的离心率为.故选:B.【答案点睛】本题考查利用双曲线的渐近线方程求双曲线的离
10、心率,利用公式计算较为方便,考查计算能力,属于基础题.8、D【答案解析】画出可行域,计算出原点到可行域上的点的最大距离,由此求得的最大值.【题目详解】画出可行域如下图所示,其中,由于,,所以,所以原点到可行域上的点的最大距离为.所以的最大值为.故选:D【答案点睛】本小题主要考查根据可行域求非线性目标函数的最值,考查数形结合的数学思想方法,属于基础题.9、D【答案解析】设非零向量与的夹角为,在等式两边平方,求出的值,进而可求得向量在向量方向上的投影为,即可得解.【题目详解】,由得,整理得,解得,因此,向量在向量方向上的投影为.故选:D.【答案点睛】本题考查向量投影的计算,同时也考查利用向量的模计
11、算向量的夹角,考查计算能力,属于基础题.10、A【答案解析】选取中间值和,利用对数函数,和指数函数的单调性即可求解.【题目详解】因为对数函数在上单调递增,所以,因为对数函数在上单调递减,所以,因为指数函数在上单调递增,所以,综上可知,.故选:A【答案点睛】本题考查利用对数函数和指数函数的单调性比较大小;考查逻辑思维能力和知识的综合运用能力;选取合适的中间值是求解本题的关键;属于中档题、常考题型.11、D【答案解析】由题,得,由的图象与直线的两个相邻交点的距离等于,可得最小正周期,从而求得,得到函数的解析式,又因为当时,由此即可得到本题答案.【题目详解】由题,得,因为的图象与直线的两个相邻交点的
12、距离等于,所以函数的最小正周期,则,所以,当时,所以是函数的一条对称轴,故选:D【答案点睛】本题主要考查利用和差公式恒等变形,以及考查三角函数的周期性和对称性.12、D【答案解析】本题首先可以通过题意画出图像并过点作垂线交于点,然后通过圆与双曲线的相关性质判断出三角形的形状并求出高的长度,的长度即点纵坐标,然后将点纵坐标带入圆的方程即可得出点坐标,最后将点坐标带入双曲线方程即可得出结果。【题目详解】根据题意可画出以上图像,过点作垂线并交于点,因为,在双曲线上,所以根据双曲线性质可知,即,因为圆的半径为,是圆的半径,所以,因为,所以,三角形是直角三角形,因为,所以,即点纵坐标为,将点纵坐标带入圆
13、的方程中可得,解得,将点坐标带入双曲线中可得,化简得,故选D。【答案点睛】本题考查了圆锥曲线的相关性质,主要考察了圆与双曲线的相关性质,考查了圆与双曲线的综合应用,考查了数形结合思想,体现了综合性,提高了学生的逻辑思维能力,是难题。二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】计算出,两个复数相等,实部与实部相等,虚部与虚部相等,列方程组求解.【题目详解】,所以,所以.故答案为:-8【答案点睛】此题考查复数的基本运算和概念辨析,需要熟练掌握复数的运算法则.14、【答案解析】先由题意设向量的坐标,再结合平面向量数量积的运算及不等式可得解【题目详解】由是单位向量若,设,则,又,
14、则,则,则,又,所以,(当或时取等)即的取值范围是,故答案为:,【答案点睛】本题考查了平面向量数量积的坐标运算,意在考查学生对这些知识的理解掌握水平15、【答案解析】根据分段函数的性质,即可求出的取值范围.【题目详解】当时, ,当时,所以,故的取值范围是.故答案为:.【答案点睛】本题考查分段函数的性质,已知分段函数解析式求参数范围,还涉及对数和指数的运算,属于基础题.16、【答案解析】求函数的导数,利用导数的几何意义即可求出切线方程.【题目详解】解:,则,又,即切点坐标为(1,0),则函数在点(1,f(1)处的切线方程为,即,故答案为:.【答案点睛】本题主要考查导数的几何意义,根据导数和切线斜率之间的关系是解决本题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)