1、2002年江西高考理科数学真题及答案本试卷分第I卷(选择题)和第II卷(非选择题)两部分第I卷1至2页第II卷3至9页共150分考试时间120分钟第卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1圆的圆心到直线的距离是ABC1D2复数的值是ABCD13不等式的解集是AB且CD且4在内,使成立的的取值范围是ABCD5设集合,则ABCD6点到曲线(其中参数)上的点的最短距离为A0B1CD27一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是ABCD8正六棱柱的底面边长为1,侧棱
2、长为,则这个棱柱侧面对角线与所成的角是ABCD9函数()是单调函数的充要条件是ABCD10函数的图象是11从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有A8种B12种C16种D20种12据2002年3月5日九届人大五次会议政府工作报告:“2001年国内生产总值达到95933亿元,比上年增长73%”,如果“十五”期间(2001年2005年)每年的国内生产总值都按此年增长率增长,那么到“十五”末我国国内年生产总值约为A115000亿元B120000亿元C127000亿元D135000亿元第II卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线13函
3、数在上的最大值与最小值这和为3,则14椭圆的一个焦点是,那么15展开式中的系数是16已知,那么三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤17已知,求、的值18如图,正方形、的边长都是1,而且平面、互相垂直点在上移动,点在上移动,若()(1)求的长;(2)为何值时,的长最小;(3)当的长最小时,求面与面所成二面角的大小19设点到点、距离之差为,到、轴的距离之比为2,求的取值范围20某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超
4、过多少辆?21设为实数,函数,(1)讨论的奇偶性;(2)求的最小值22设数列满足:,(I)当时,求并由此猜测的一个通项公式;(II)当时,证明对所的,有(i)(ii)参考答案一、选择题题号123456789101112答案ACDCBBCBABBC二、填空题(13)2(14)1(15)1008(16)三、解答题(17)解:由,得,即(18)解(I)作交于点,交于点,连结,依题意可得,且,即是平行四边形由已知,(II)由(I)所以,当时,即当、分别为、的中点时,的长最小,最小值为(III)取的中点,连结、,为的中点,即即为二面角的平面角又,所以,由余弦定理有故所求二面角为(19)解:设点的坐标为,
5、依题设得,即,因此,点、三点不共线,得因此,点在以、为焦点,实轴长为的双曲线上,故将代入,并解得,因所以解得即的取值范围为(20)解:设2001年末汽车保有量为万辆,以后各年末汽车保有量依次为万辆,万辆,每年新增汽车万辆,则,对于,有所以当,即时当,即时数列逐项增加,可以任意靠近因此,如果要求汽车保有量不超过60万辆,即()则,即万辆综上,每年新增汽车不应超过万辆(21)解:(I)当时,函数此时,为偶函数当时,此时既不是奇函数,也不是偶函数(II)(i)当时,当,则函数在上单调递减,从而函数在上的最小值为若,则函数在上的最小值为,且(ii)当时,函数若,则函数在上的最小值为,且若,则函数在上单调递增,从而函数在上的最小值为综上,当时,函数的最小值为当时,函数的最小值为当时,函数的最小值为(22)解(I)由,得由,得由,得由此猜想的一个通项公式:()(II)(i)用数学归纳法证明:当时,不等式成立假设当时不等式成立,即,那么也就是说,当时,据和,对于所有,有(ii)由及(i),对,有于是,