1、一、选择题(本大题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合,则( )A B C D【答案】A【解析】试题分析:由题意得,所以,故选A.考点:1.一元二次不等式的解法;2.集合的交集运算.2、某几何体的三视图如图所示(单位:),则该几何体的体积是( )A BC D【答案】C考点:1.三视图;2.空间几何体的体积.3、设,是实数,则“”是“”的( )A充分不必要条件 B必要不充分条件C充分必要条件 D既不充分也不必要条件【答案】D考点:1.充分条件、必要条件;2.不等式的性质.4、设,是两个不同的平面,是两条不同的直线,且,( )A若,则 B若
2、,则C若,则 D若,则【答案】A【解析】试题分析:采用排除法,选项A中,平面与平面垂直的判定,故正确;选项B中,当时,可以垂直,也可以平行,也可以异面;选项C中,时,可以相交;选项D中,时,也可以异面.故选A.考点:直线、平面的位置关系.5、函数(且)的图象可能为( )A B C D【答案】D【解析】试题分析:因为,故函数是奇函数,所以排除A, B;取,则,故选D.考点:1.函数的基本性质;2.函数的图象.6、有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同已知三个房间的粉刷面积(单位:)分别为,且,三种颜色涂料的粉刷费用(单位:元/)分别为,且在不同的方案中,最
3、低的总费用(单位:元)是( )A B C D【答案】B考点:1.不等式性质;2.不等式比较大小.7、如图,斜线段与平面所成的角为,为斜足,平面上的动点满足,则点的轨迹是( )A直线 B抛物线C椭圆 D双曲线的一支【答案】C【解析】试题分析:由题可知,当P点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成角的平面截圆锥,所得图形为椭圆.故选C.考点:1.圆锥曲线的定义;2.线面位置关系.8、设实数,满足( )A若确定,则唯一确定 B若确定,则唯一确定C若确定,则唯一确定 D若确定,则唯一确定【答案】B【解析】试题解析:因为,所以,所以,故当确定时,确定,所以唯一确定.故选
4、B.考点:函数概念二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9、计算: , 【答案】考点:对数运算10、已知是等差数列,公差不为零若,成等比数列,且,则 , 【答案】【解析】试题分析:由题可得,故有,又因为,即,所以.考点:1.等差数列的定义和通项公式;2.等比中项.11、函数的最小正周期是 ,最小值是 【答案】【解析】试题分析:,所以;.考点:1.三角函数的图象与性质;2.三角恒等变换.12、已知函数,则 ,的最小值是 【答案】考点:1.分段函数求值;2.分段函数求最值.13、已知,是平面单位向量,且若平面向量满足,则 【答案】【解析】试题分析:由题可知,不妨,设
5、,则,所以,所以.考点:1.平面向量数量积运算;2.向量的模.14、已知实数,满足,则的最大值是 【答案】15【解析】试题分析: 由图可知当时,满足的是如图的劣弧,则在点处取得最大值5;当时,满足的是如图的优弧,则与该优弧相切时取得最大值,故,所以,故该目标函数的最大值为.考点:1.简单的线性规划;15、椭圆()的右焦点关于直线的对称点在椭圆上,则椭圆的离心率是 【答案】考点:1.点关于直线对称;2.椭圆的离心率.三、解答题(本大题共5小题,共74分解答应写出文字说明、证明过程或演算步骤)16. (本题满分14分)在中,内角A,B,C所对的边分别为.已知.(1)求的值;(2)若,求的面积.【答
6、案】(1);(2)考点:1.同角三角函数基本关系式;2.正弦定理;3.三角形面积公式.17. (本题满分15分)已知数列和满足,.(1)求与;(2)记数列的前n项和为,求.【答案】(1);(2)【解析】试题分析:(1)根据数列递推关系式,确定数列的特点,得到数列的通项公式;(2)根据(1)问得到新的数列的通项公式,利用错位相减法进行数列求和.考点:1.等差等比数列的通项公式;2.数列的递推关系式;3.错位相减法求和.18. (本题满分15分)如图,在三棱锥中,在底面ABC的射影为BC的中点,D为的中点.(1)证明: ; (2)求直线和平面所成的角的正弦值.【答案】(1)略;(2) (2)作,垂
7、足为F,连结BF.因为平面,所以.因为,所以平面.所以平面.所以为直线与平面所成角的平面角.由,得.由平面,得.由,得.所以考点:1.空间直线、平面垂直关系的证明;2.直线与平面所成的角.19. (本题满分15分)如图,已知抛物线,圆,过点作不过原点O的直线PA,PB分别与抛物线和圆相切,A,B为切点.(1)求点A,B的坐标; (2)求的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.【答案】(1);(2)因为直线PA与抛物线相切,所以,解得.所以,即点.设圆的圆心为,点的坐标为,由题意知,点B,O关于直线PD对称,故有,解得.即点.(2)由(1)知,直线AP的方程为,所以点B到直线PA的距离为.所以的面积为.考点:1.抛物线的几何性质;2.直线与圆的位置关系;3.直线与抛物线的位置关系.20. (本题满分15分)设函数.(1)当时,求函数在上的最小值的表达式;(2)已知函数在上存在零点,求b的取值范围.【答案】(1);(2)考点:1.函数的单调性与最值;2.分段函数;3.不等式性质;4.分类讨论思想.