1、2019 正确教育原创预测卷 A 卷 理科数学 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并收回。一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合22ln(34),01xAx yxxBxx,全集U R,则RAB()A.1,2B.1,2)(3,4C.1,3)D.1,1)2,42.已知3i
2、2i,Riaba b,其中i为虚数单位,则复数izab在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知命题:p在ABC中,AB是sinsinAB的充要条件;命题:q“1x”是“82x”的必要不充分条件,则下面的命题正确的是()A.pqB.pq C.()pqD.()pq 4.已知正项等比数列 na的前n项和为nS,且2474SS,则公比q的值为()A.1B.1或12C.32D.325.已知双曲线22221(0,0)xyabab的一条渐近线方程2yx,且点 P 为双曲线右支上一点,且12,F F为双曲线左右焦点,12FF P的面积为4 3,且1260FPF,则
3、双曲线的实轴的长为()A.1B.2C.4D.4 36.已知某几何体三视图如图所示,则该几何体的各条棱中最长棱的长度为()A.4B.5C.13 D.26由免费初高中、大学网课等资源微信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。书山有路勤为径学海无涯苦作舟由免费初高中、大学网课等资源微信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。0 7.要得到函数1cos2yx的图象,只需将函数1sin 223yx的图象上所有点的()A.横坐标缩短到原来的12(纵坐标不变),再向左平移3个单位长度 B.横坐标缩短到原来的12(纵坐标不变),再向
4、右平移6个单位长度 C.横坐标伸长到原来的2倍(纵坐标不变),再向左平移6个单位长度 D.横坐标伸长到原来的2倍(纵坐标不变),再向右平移3个单位长度 8.已知直线:280lxy 上的两点,A B,且4AB,点 P 为圆22:230D xyx上任一点,则PAB的面积的最大值为()A.5 32 B.2 53 C.4 32 D.4 54 9.已 知1nx展 开 式 中 第 三 项 的 二 项 式 系 数 与 第 四 项 的 二 项 式 系 数 相 等,20121nnnxaa xa xa x,若12242naaa,则0121nnaaaa 的值为()A.1 B.-1 C.81 D.-81 10.已知在
5、四面体ABCD中,2ABADBCCDBD,平面ABD 平面BDC,则四面体ABCD的外接球的表面积为()A.203 B.6 C.223 D.8 11.已知函数)(xf是定义域为R的偶函数,且满足)()2(xfxf,当10 x时,22)(xxf,)(xg=)22(|1|logaxa,则函数)()()(xgxfxh所有零点的和为 ()由免费初高中、大学网课等资源微信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。书山有路勤为径学海无涯苦作舟由免费初高中、大学网课等资源微信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。1A.3 B.4 C
6、 5 D.6 12.已知函数 321162f xxbxcx的导函数 fx是偶函数,若方程 ln0fxx在区间1,ee上有两个不相等的实数根,则实数c的取值范围是()A.2111,2e2,B.2111,2e2 C.2111e,22D.2111e,22 二、填空题:本题共 4 小题,每小题 5 分,共 20 分。13.已知向量(3,4),(1,)abk,且ab,则4ab与a的夹角为_.14.已知实数,x y满足不等式组0,0,yyxxym且目标函数32zxy的最大值为180,则实数m的值为_.15.如图,点D在ABC的边AC上,且10CD=3AD,BD=2,cos24ABC,则3ABBC的最大值为
7、_.16.直线:2l xmy经过抛物线2:20C ypx p的焦点F,与抛物线相交于,A B两点,过原点的直线经过弦AB的中点D,并且与抛物线交于点E(异于原点),则OEOD的取值范围是_.三、解答题:共 70 分,解答应写出文字说明、证明过程或演算步骤。第17 21题为必考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。17.(12 分)已知数列1na 的前n项和nS满足*2,NnnSa n.(1)求证数列1na 为等比数列,并求na关于n的表达式;(2)若2log1nnba,求数列1nnab的前n项和nT.18.(12 分)已 知 在 多 面 体A B C D E
8、 F中,平 面CDFE平 面A B C D,且 四 边 形ECDF为 正 方 形,且36,5ABDCADBC,点,P Q分别是,BE AD的中点.(1)求证:/FECDPQ面;(2)求平面 AEF 与平面 PCD 所成的锐二面角的余弦值.由免费初高中、大学网课等资源微信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。书山有路勤为径学海无涯苦作舟由免费初高中、大学网课等资源微信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。2QPFEDCBA 19.(12 分)我国在 2018 年社保又出新的好消息,之前流动就业人员跨地区就业后,社保转
9、移接续的手续往往比较繁琐,费时费力,成为群众反映突出的一大难点痛点。社保改革后将简化手续,深得流动就业人员的赞誉。某市社保局从 2018 年办理社保的人员中抽取 300 人,得到其办理手续所需时间(天)与人数的频数分布表:(1)若300 名办理社保的人 员 中 流动人员210 人,非流动人员 90 人,若办理时间超过 4 天的人员里非流动人员有 60 人,请完成办理社保手续所需时间与是否流动人员的列联表,并判断是否有95%的把握认为“办理社保手续所需时间与是否流动人员”有关.办理社保手续所需时间与是否流动人员列联表 (2)为了改进工作作风,提高效率,从抽取的 300 人中办理时间为8,12)流
10、动人员中利用分层抽样,抽取12 名流动人员召开座谈会,其中 3 人要求交书面材料,3 人中办理的时间为10,12的人数为,求出分布列及期望值.附:22()()()()()n adbcKab cd ac bd 20()P Kk 0.10 0.05 0.010 0.005 0k 2.706 3.841 6.635 7.879 20.(12 分)时间 0,2)2,4)4,6)6,8)8,10)10,12)人数 15 60 90 75 45 15 流动人员 非流动人员 总计 办理社保手续所需时间不超过 4 天 办理社保手续所需时间超过 4 天 60 总计 210 90 300 由免费初高中、大学网课等
11、资源微信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。书山有路勤为径学海无涯苦作舟由免费初高中、大学网课等资源微信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。3已 知 椭 圆2222:10 xyCabab过点2,1E,其左、右顶点分别为,A B,且离心率22e.(1)求椭圆C的方程;(2)设00,M x y为椭圆C上异于,A B两点的任意一点,MNAB于点N,直线00:240l x xy y.证明:直线l与椭圆C有且只有一个公共点;设过点A且与x轴垂直的直线与直线l交于点P,证明:直线BP经过线段MN的中点.21.(12 分)已
12、知函数2()ln3f xxaxx()aR.(1)函数()f x在点1,(1)f处的切线方程为2y ,求函数()f x的极值;(2)当1a 时,对于任意12,1,10 x x,当21xx时,不等式21122 1()()()m xxf xf xx x恒成立,求出实数m的取值范围.(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一个题计分。22.选修 4-4:极坐标与参数方程(10 分)在极坐标系中,过曲线2sin2 cos0pp的焦点F作弦BC,且弦BC的垂直平分线交BC于点M,交x轴于点N.(1)当弦BC所在直线的倾斜角为34时,写出弦BC所在直线的参数方程,并求BC;(2)求证:2MNFBFC.23.选修 4-5:不等式选讲(10 分)已知 2f xxaxbc,a b cR.(1)当1ab,3c 时,求函数2log ()2 yf xc的定义域;(2)若229abc,且对于任意xR,有2()223f xtt恒成立,求t的取值范围.由免费初高中、大学网课等资源微信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。书山有路勤为径学海无涯苦作舟由免费初高中、大学网课等资源微信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。4