收藏 分享(赏)

河北衡水中学2019年高考押题试卷理数(2).pdf

上传人:a****2 文档编号:2845881 上传时间:2024-01-08 格式:PDF 页数:13 大小:522.89KB
下载 相关 举报
河北衡水中学2019年高考押题试卷理数(2).pdf_第1页
第1页 / 共13页
河北衡水中学2019年高考押题试卷理数(2).pdf_第2页
第2页 / 共13页
河北衡水中学2019年高考押题试卷理数(2).pdf_第3页
第3页 / 共13页
河北衡水中学2019年高考押题试卷理数(2).pdf_第4页
第4页 / 共13页
河北衡水中学2019年高考押题试卷理数(2).pdf_第5页
第5页 / 共13页
河北衡水中学2019年高考押题试卷理数(2).pdf_第6页
第6页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、河北衡水中学河北衡水中学 2012019 9 年高考押题试卷年高考押题试卷 理数试卷理数试卷(二二)第第卷卷 一、一、选择题:本大题共选择题:本大题共 1212 个小题个小题,每小题每小题 5 5 分分,共共 6060 分分.在每小题给出的四个在每小题给出的四个选项中,只有一项是符合题目要求的选项中,只有一项是符合题目要求的.1.设集合 Ax xxxZ|60,2,Bz zxy xA yA|,,则AB()A0,1 B0,1,2 C0,1,2,3 D 1,0,1,2 2.设复数z满足iiz121,则z|1()A5 B51 C55 D255 3.若43cos()1,2(0,),则sin的值为()A6

2、42 B642 C187 D32 4.已知直角坐标原点O为椭圆C:ababxy1(0)2222的中心,F1,F2为左、右焦点,在区间(0,2)任取一个数e,则事件“以e为离心率的椭圆C与圆O:xyab2222没有交点”的概率为()A42 B442 C22 D222 5.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90的正角.已知双曲线E:ababxy1(0,0)2222,当其离心率e 2,2时,对应双曲线的渐近线的夹角的取值范围为()A60,B 6 3,C 4 3,D 3 2,6.某几何体的三视图如图所示,若该几何体的体积为32,则它的表面积是()由免费初高中、大学网课等资源威信公

3、众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。A2(3)2223 13 B42()2223 133 C22213 D42213 7.函数yxxsinln在区间 3,3的图象大致为()A B C D 8.二项式bxaxabn()(0,0)1的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则ab的值为()A4 B8 C12 D16 9.执行如图的程序框图,若输入的x0,y1,n1,则输出的p的值为()由免费初高中、大学网课等资源威信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。A81 B812 C81

4、4 D818 10.已知数列11a,22a,且222(1)nnnaa,*nN,则2017S的值为()A2016 10101 B10092017 C2017 10101 D10092016 11.已知函数()sin()f xAx(0,0,)2A的图象如图所示,令()()()g xf xfx,则下列关于函数()g x的说法中不正确的是()A函数()g x图象的对称轴方程为()12xkkZ B函数()g x的最大值为2 2 C函数()g x的图象上存在点P,使得在P点处的切线与直线l:31yx平行 D方程()2g x 的两个不同的解分别为1x,2x,则12xx最小值为2 12.已知函数32()31f

5、 xaxx,若()f x存在三个零点,则a的取值范围是()A(,2)B(2,2)C(2,)D(2,0)(0,2)第第卷卷 二、填空题二、填空题:本大题共:本大题共 4 4 小题,小题,每每小小题题 5 5 分,分,共共 2020 分分.13.向量(,)am n,(1,2)b ,若向量a,b共线,且2ab,则mn的值为 14.设点M是椭圆22221(0)xyabab上的点,以点M为圆心的圆与x轴相切于椭圆的焦点F,圆M与y轴相交于不同的两点P、Q,若PMQ为锐角三角形,则椭圆的离心率的取值范围为 由免费初高中、大学网课等资源威信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删

6、除,侵删。15.设x,y满足约束条件230220220 xyxyxy,则yx的取值范围为 16.在平面五边形ABCDE中,已知120A,90B,120C,90E,3AB,3AE,当五边形ABCDE的面积6 3,9 3)S时,则BC的取值范围为 三、解答题三、解答题:解答应写出文字说明、证明过程或演算步骤解答应写出文字说明、证明过程或演算步骤.17.已知数列na的前n项和为nS,112a,*121(2,)nnSSnnN.(1)求数列na的通项公式;(2)记*12log()nnba nN,求11nnb b的前n项和nT.18.如图所示的几何体ABCDEF中,底面ABCD为菱形,2ABa,120AB

7、C,AC与BD相交于O点,四边形BDEF为直角梯形,/DEBF,BDDE,22 2DEBFa,平面BDEF 底面ABCD.(1)证明:平面AEF 平面AFC;(2)求二面角EACF的余弦值.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A、B、C、D、E五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:由免费初高中、大学网课等资源威信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。(1)试估算该校高三年级学生获得成绩为B的

8、人数;(2)若等级A、B、C、D、E分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从A、B两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A级的个数的分布列与数学期望.20.已知椭圆C:22221(0)xyabab的离心率为22,且过点23(,)22P,动直线l:ykxm交椭圆C于不同的两点A,B,且0OA OB (O为坐标原点).(1)求椭圆C的方程.(2)讨论2232mk是否为定值?若为定值

9、,求出该定值,若不是请说明理由.21.设函数22()ln()f xaxxax aR.(1)试讨论函数()f x的单调性;(2)设2()2()lnxxaax,记()()()h xf xx,当0a 时,若方程()()h xm mR有两个不相等的实根1x,2x,证明12()02xxh.请考生在请考生在 2222、2323 题中任选一题作答,如果多做,则按所做的第一题记分题中任选一题作答,如果多做,则按所做的第一题记分,作答,作答时请写清题号时请写清题号.22.选修 4-4:坐标系与参数方程 在直角坐标系xOy中,曲线1C:3cos2sinxtyt(t为参数,0a),在以坐标原点为极由免费初高中、大学

10、网课等资源威信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。点,x轴的非负半轴为极轴的极坐标系中,曲线2C:4sin.(1)试将曲线1C与2C化为直角坐标系xOy中的普通方程,并指出两曲线有公共点时a的取值范围;(2)当3a 时,两曲线相交于A,B两点,求AB.23.选修 4-5:不等式选讲 已知函数()211f xxx.(1)在下面给出的直角坐标系中作出函数()yf x的图象,并由图象找出满足不等式()3f x 的解集;(2)若函数()yf x的最小值记为m,设,a bR,且有22abm,试证明:221418117ab.由免费初高中、大学网课等资源威信公众号:

11、博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。参考参考答案答案及解析及解析 理科数学理科数学()一、选择题一、选择题 1-5:BCAAD 6-10:AABCC 11、12:CD 二、填空题二、填空题 13.8 14.625 122e 15.2 7,5 4 16.3,3 3)三、解答题三、解答题 17.解:(1)当2n 时,由121nnSS及112a,得2121SS,即121221aaa,解得214a.又由121nnSS,可知121nnSS,-得12nnaa,即11(2)2nnana.且1n 时,2112aa适合上式,因此数列na是以12为首项,12为公比的等比数列,故*

12、1()2nnanN.(2)由(1)及*12log()nnba nN,可知121log()2nnbn,所以11111(1)1n nb bn nnn,故22 31111nnn nTb bb bb b11111(1)()()2231nn1111nnn.18.解:(1)因为底面ABCD为菱形,所以ACBD,又平面BDEF 底面ABCD,平面BDEF平面ABCDBD,因此AC 平面BDEF,从而ACEF.又BDDE,所以DE 平面ABCD,由免费初高中、大学网课等资源威信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。由2ABa,22 2DEBFa,120ABC,可知224

13、26AFaaa,2BDa,22426EFaaa,22482 3AEaaa,从而222AFFEAE,故EFAF.又AFACA,所以EF 平面AFC.又EF 平面AEF,所以平面AEF 平面AFC.(2)取EF中点G,由题可知/OGDE,所以OG 平面ABCD,又在菱形ABCD中,OAOB,所以分别以OA,OB,OG的方向为x,y,z轴正方向建立空间直角坐标系Oxyz(如图示),则(0,0,0)O,(3,0,0)Aa,(3,0,0)Ca,(0,2 2)Eaa,(0,2)Faa,所以(0,2 2)(3,0,0)AEaaa(3,2 2)aaa,(3,0,0)(3,0,0)ACaa (2 3,0,0)a

14、,(0,2)(0,2 2)EFaaaa(0,2,2)aa.由(1)可知EF 平面AFC,所以平面AFC的法向量可取为(0,2,2)EFaa.设平面AEC的法向量为(,)nx y z,则00n AEn AC ,即32 200 xyzx,即2 20yzx,令2z,得4y,所以(0,4,2)n.从而cos,n EFn EFnEF 6336 3aa.故所求的二面角EACF的余弦值为33.由免费初高中、大学网课等资源威信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。19.解:(1)从条形图中可知这100人中,有56名学生成绩等级为B,所以可以估计该校学生获得成绩等级为B的

15、概率为561410025,则该校高三年级学生获得成绩为B的人数约有1480044825.(2)这100名学生成绩的平均分为1(32 10056 907 80100 3 702 60)91.3 ,因为91.390,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)由题可知用分层抽样的方法抽取11个学生样本,其中A级4个,B级7个,从而任意选取3个,这3个为A级的个数的可能值为0,1,2,3.则03473117(0)33C CPC,124731128(1)55C CPC,214731114(2)55C CPC,30473114(3)165C CPC.因此可得的分布列为:0 1 2 3 P

16、 733 2855 1455 4165 则72814()012335555E 412316511.20.解:(1)由题意可知22ca,所以222222()acab,即222ab,又点23(,)22P在椭圆上,所以有2223144ab,由联立,解得21b,22a,由免费初高中、大学网课等资源威信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。故所求的椭圆方程为2212xy.(2)设11(,)A x y,22(,)B xy,由0OA OB ,可知1 2120 x xy y.联立方程组2212ykxmxy,消去y化简整理得222(1 2)4220kxkmxm,由2222

17、168(1)(1 2)0k mmk,得221 2km,所以12241 2kmxxk,21222212mx xk,又由题知1 2120 x xy y,即1 212()()0 x xkxm kxm,整理为221 212(1)()0kx xkm xxm.将代入上式,得22222224(1)01212mkmkkmmkk.化简整理得222322012mkk,从而得到22322mk.21.解:(1)由22()lnf xaxxax,可知2()2afxxax 222(2)()xaxaxa xaxx.因为函数()f x的定义域为(0,),所以,若0a 时,当(0,)xa时,()0fx,函数()f x单调递减,当

18、(,)xa时,()0fx,函数()f x单调递增;若0a 时,当()20fxx在(0,)x内恒成立,函数()f x单调递增;由免费初高中、大学网课等资源威信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。若0a 时,当(0,)2ax时,()0fx,函数()f x单调递减,当(,)2ax 时,()0fx,函数()f x单调递增.(2)证明:由题可知()()()h xf xx2(2)ln(0)xa xax x,所以()2(2)ah xxax22(2)(2)(1)xa xaxa xxx.所以当(0,)2ax时,()0h x;当(,)2ax 时,()0h x;当2ax 时

19、,()02ah.欲证12()02xxh,只需证12()()22xxahh,又2()20ah xx,即()h x单调递增,故只需证明1222xxa.设1x,2x是方程()h xm的两个不相等的实根,不妨设为120 xx,则21112222(2)ln(2)lnxa xaxmxa xaxm,两式相减并整理得1212(lnln)a xxxx22121222xxxx,从而221212121222lnlnxxxxaxxxx,故只需证明2212121212122222(lnln)xxxxxxxxxx,即22121212121222lnlnxxxxxxxxxx.因为1212lnln0 xxxx,所以(*)式可

20、化为12121222lnlnxxxxxx,即11212222ln1xxxxxx.因为120 xx,所以1201xx,由免费初高中、大学网课等资源威信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。不妨令12xtx,所以得到22ln1ttt,(0,1)t.设22()ln1tR ttt,(0,1)t,所以22214(1)()0(1)(1)tR tttt t,当且仅当1t 时,等号成立,因此()R t在(0,1)单调递增.又(1)0R,因此()0R t,(0,1)t,故22ln1ttt,(0,1)t得证,从而12()02xxh得证.22.解:(1)曲线1C:3cos2s

21、inxtyt,消去参数t可得普通方程为222(3)(2)xya.曲线2C:4sin,两边同乘.可得普通方程为22(2)4xy.把22(2)4yx代入曲线1C的普通方程得:222(3)413 6axxx,而对2C有222(2)4xxy,即22x,所以2125a故当两曲线有公共点时,a的取值范围为1,5.(2)当3a 时,曲线1C:22(3)(2)9xy,两曲线交点A,B所在直线方程为23x.曲线22(2)4xy的圆心到直线23x 的距离为23d,所以48 22 493AB.23.解:(1)因为()211f xxx 3,112,1213,2x xxxx x ,所以作出图象如图所示,并从图可知满足不

22、等式()3f x 的解集为 1,1.由免费初高中、大学网课等资源威信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。(2)证明:由图可知函数()yf x的最小值为32,即32m.所以2232ab,从而227112ab ,从而 2222142(1)(1)117abab22222214214(1)()5()1711baaabab 222221 4(1)18527117baab.当且仅当222214(1)11baab时,等号成立,即216a,243b 时,有最小值,所以221418117ab得证.由免费初高中、大学网课等资源威信公众号:博物青年 整理,请勿用于任何商业用途,请在下载后24小时后删除,侵删。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题 > 2019年衡水金卷先享题信息卷试卷资料

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2