1、单片机显示接口实验报告范文一、实验目的1.了解温度传感器电路的工作原理2. 了解温度控制的根本原理3. 掌握一线总线接口的使用二、实验说明这是一个综合硬件实验,分两大功能:温度的测量和温度的控制。 1.DALLAS最新单线数字温度传感器DS18B20简介Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持 “一线总线接口的温度传感器。现场温度直接以“一线总线的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V5.5V的电压范围,使系统设计更灵活、方便。DS18B20测量
2、温度范围为 -55C+125C,在-10+85C范围内,精度为0.5C。DS18B20可以程序设定912位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20内部结构DS18B20内部结构主要由四局部组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置存放器。DS18B20的管脚排列如下:DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端在寄生电源接线方式时接地。光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位28H是产品类型标号,接着的48位是该D
3、S18B20自身的序列号,最后8位是前面56位的循环冗余校验码CRC=X8+X5+X4+1。光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625/LSB形式表达,其中S为符号位。这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘以0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘以0.
4、0625即可得到实际温度。例如+125的数字输出为07D0H,+25.0625的数字输出为0191H,-25.0625的数字输出为DS18B20温度传感器的存储器DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的E2RAM,后者存放高温度和低温度触发器TH、TL和结构存放器。暂存存储器包含了8个连续字节,前两个字节是测得的温度信息,第一个字节的内容是温度的低八位,第二个字节是温度的高八位。第三个和第四个字节是TH、TL的易失性拷贝,第五个字节是结构存放器的易失性拷贝,这三个字节的内容在每一次上电复位时被刷新。第六、七、八个字节用于内部计算。第九个字节是冗余检验
5、字节。低五位一直都是1 ,TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用户不要去改动。R1和R0用来设置分辨率,如下表所示:DS18B20出厂时被设置为12位根据DS18B20的通讯协议,主机控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行复位,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。复位要求主CPU将数据线下拉500微秒,然后释放,DS18B20收到信号后等待1660微秒左右,后发出60240微秒的存在低脉冲,主CPU收到此信号表示复位成功。2.
6、本实验在读取温度的根底上,完成类似空调恒温控制的实验。用加热电阻代替加热电机。温度值通过LED静态显示电路以十进制形式显示出来,制冷采用自然冷却。三、实验内容及步骤本实验需要用到单片机最小应用系统F1区、串行静态显示I3区和温度传感器模块C3区。1.DS18B20的CONTROL接最小应用系统P1.4,OUT接最小应用系统P2.0,最小系统的P1.0,P1.1接串行静态显示的DIN,CLK端。2.用串行数据通信线连接计算机与仿真器,然后将仿真器插到模块的锁紧插座中,请注意仿真器的方向:缺口朝上。3.翻开Keil uVision2仿真软件,首先建立本实验的工程文件,接着添加TH44_ DS18B
7、20.ASM源程序,进行编译,直到编译无误。4.编译无误后,全速运行程序。程序正常运行后,按下自锁开关控制SIC。LED数显为 “XX为十进制温度测量值, “XX为十进制温度设定值,按下自锁开关“控制SIC那么加热源开始加热,温度也随着变化,当加热到设定的控制温度时如40度时,停止加热。5.也可以把源程序编译成可执行文件,用ISP烧录器烧录到89S52/89S51芯片中。ISP烧录器的使用查看附录二 四、源程序;单片机内存分配申明!TEMPER_L EQU 29H ;用于保存读出温度的低8位TEMPER_H EQU 28H ;用于保存读出温度的高8位FLAG1 EQU 38H ;是否检测到DS
8、18B20标志位A_BIT EQU 20H ;数码管个位数存放内存位置B_BIT EQU 21H ;数码管十位数存放内存位置LEDBUF EQU 30HTEMPEQU 55HDIN BIT P1.0CLK BIT P1.1ORG 0000HLJMP STARTORG 0100H START: SETBP1.4 MAIN:LCALL GET_TEMPER;调用读温度子程序;进行温度显示,这里我们考虑用网站提供的两位数码管来显示温度 ;显示范围00到99度,显示精度为1度;因为12位转化时每一位的精度为0.0625度,我们不要求显示小数所以可以抛弃29H的低4位;将28H中的低4位移入29H中的高
9、4位,这样获得一个新字节,这个字节就是实际测量获得的温度;这个转化温度的方法可是我想出来的哦非常简洁无需乘于0.0625系数MOV A,29HMOV C,40H;将28H中的最低位移入CRRC AMOV C,41HRRC AMOV C,42HRRC AMOV C,43HRRC AMOV 29H,ALCALL DISPLAYRESULTLCALL DISPLAYLED;调用数码管显示子程序LCALL DELAY1 AJMP MAIN; 这是DS18B20复位初始化子程序 INIT_1820:SETB P2.0NOPCLR P2.0;主机发出延时537微秒的复位低脉冲MOV R1,#3 TSR1:MOV R0,#107DJNZ R0,$DJNZ R1,TSR1SETB P2.0;然后拉高数据线NOPNOPNOPMOV R0,#25H TSR2:JNB P2.0,TSR3;等待DS18B20回应DJNZ R0,TSR2LJMP TSR4 ; 延时 TSR3:SETB FLAG1; 置标志位,表示DS1820存在LJMP TSR5 TSR4:CLR FLAG1 ; 清标志位,表示DS1820不存在