收藏 分享(赏)

2023年对数与对数运算教案范文.docx

上传人:la****1 文档编号:294428 上传时间:2023-03-19 格式:DOCX 页数:11 大小:17.66KB
下载 相关 举报
2023年对数与对数运算教案范文.docx_第1页
第1页 / 共11页
2023年对数与对数运算教案范文.docx_第2页
第2页 / 共11页
2023年对数与对数运算教案范文.docx_第3页
第3页 / 共11页
2023年对数与对数运算教案范文.docx_第4页
第4页 / 共11页
2023年对数与对数运算教案范文.docx_第5页
第5页 / 共11页
2023年对数与对数运算教案范文.docx_第6页
第6页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、学海无涯对数与对数运算教案篇一:对数和对数的运算2.2.1 对数与对数运算三课时教学目的:1理解并经历对数的定义,对数与指数的互化,对数恒等式及对数的性质2理解并掌握对数运算法那么的内容及推导过程 3纯熟运用对数的性质和对数运算法那么解题 4对数的初步应用.教学重点:对数定义、对数的性质和运算法那么教学难点:对数定义中涉及较多的难以经历的名称,以及运算法那么的推导 教学方法:学导式 教学过程设计第一课时师:板书已经明白国民消费总值每年平均增长率为7.2,求20年后国民消费总值是原来的多少倍?20生:设原来国民消费总值为1,那么20年后国民消费总值y=1+7.2=1.07220,所20以20年后

2、国民消费总值是原来的1.072倍师:这是个实际应用征询题,我们把它转化为数学中明白底数和指数,求幂值的征询题也确实是上面学习的指数征询题师:板书已经明白国民消费总值每年平均增长率为7.2,征询通过多年年后国民消费总值是原来的4倍?师:分析仿照上例,设原来国民消费总值为1,需经x年后国民消费总值是原来的4x倍列方程得:1.072=4我们把这个应用征询题转化为明白底数和幂值,求指数的征询题,这是上述征询题的逆征询题,即本节的对数征询题师:板书一般地,假设aa0,a1的x次幂等于N,确实是aN,那么数x就叫做以a为底N的对数(logarithm),记作x=logaN,其中a叫做对数的底数,N叫做真数

3、,式子logaN叫做对数式对数这个定义的认识及相关例子:(1)对数式logaN实际上确实是指数式中的指数x的一种新的记法 (2)对数是一种新的运算是明白底和幂值求指数的运算 实际上aN这个式子涉及到了三个量a,x,N,由方程的观点可得“知二求一明白a,x可求N,即前面学过的指数运算;明白x为自然数时、N可求a,即初中学过的开根号运算,a;明白a,N能够求x,即今天要学习的对数运算,记作logaN= x因而,对数是一种新的运算,一种明白底和幂值求指数的运算而每学一种新的运算,首先要学习它的记法,对数运算的记法为logaN,读作:以a为底N的对数请同学留意这种运算的写法和读法师:下面我来介绍两个在

4、对数开展过程中有着重要意义的对数 师:板书对数logaNa0且a1在底数a=10时,叫做常用对数(common logarithm),简记lgN;底数a=e时,叫做自然对数(natural logarithm),记作lnN,其中e是个无理数,即e2.718 28师:实际上指数与对数只是数量间的同一关系的两种不同方式为了更深化认识并经历xx11(1)5625;(2)2;(3)5.7364346m练习2 把以下对数方式写成指数方式:(1)log1164;(2)lg0.012;(3)ln102.3032练习3 求以下各式的值:两名学生板演练习1,2题过程略,一生板演练习三2由于2=4,因而以2为底4

5、的对数等于2由于5=125,因而以5为底125的对数等于3 留意纠正学生的错误读法和写法 例题教材第73页例题2师:由定义,我们还应留意到对数式logaN=b中字母的取值范围是什么? 生:a0且a1;xR;NR师:NR?这是学生最易出错的地点,应一开场让学生牢牢记住真数大于零x生:由于在实数范围内,正数的任何次幂都是正数,因而a=N中N总是正数 师:要特别强调的是:零和负数没有对数 师:定义中为什么规定a0,a1? 按照本班情况决定是否设置此征询生:由于假设a0,那么N取某些值时,x可能不存在,如x=log-28不存在;假设a=0,那么当N不为0时,x不存在,如log02不存在;当N为0时,x

6、能够为任何正数,是不唯一的,即log00有无数个值;假设a=1,N不为1时,x不存在,如log13不存在,N为1时,x能够为任何数,是不唯一的,即log11有无数多个值因而,我们规定:a0,a1x此答复能培养学生分类讨论的数学思想这个征询题从a=N出发答复较为简单 练习4 计算以下对数:3lg10000,lg0.01,2log4,3log27,10lg105,51og1125235师:请同学说出结果,并觉察规律,大胆猜想 生:2生:3log24=4这是由于log4=2,而2=422log327lg105=27这是由于log327=3,而3=27 =105logN1og11253生:10生:我猜

7、想aaN,因而55=1125师:特别好这确实是我们下面要学习的对数恒等式 师:板书alogaNNa0,a1,N0用红笔在字母取值范围下画上曲线再次鼓舞学生,并提出更高要求,给出严格证明学生讨论,并口答 生:板书 证明:设指数等式a=N,那么相应的对数等式为logaN=b,因而a=aaN 师:你是按照什么证明对数恒等式的? 生:按照对数定义b师:分析小结证明的关键是设指数等式a=N由于要证明这个对数恒等式,而如今我们有关对数的知识只有定义,因而显然要利用定义加以证明而对数定义是建立在指数根底之上的,因而必须先设出指数等式,从而转化成对数等式,再进展证明bblogN师:掌握了对数恒等式的推导之后,

8、我们要特别留意此等式的适用条件 生:a0,a1,N0师:接下来观察式子构造特点并加以经历 给学生一分钟时间 师:板书2=?24=?log8log2生:22=8;24=2师:第2题对吗?错在哪儿?师:接着追征询在运用对数恒等式时应留意什么? 经历上面的错误,使学生更结实地记住对数恒等式生:当幂的底数和对数的底数一样时,才能够用公式aaN 师用红笔在两处a上重重地描写 师:最后说说对数恒等式的作用是什么? 生:化简!师:请翻开书74页,做练习4生口答略师:对对数的定义我们已经有了一定认识,如今,我们按照定义来进一步研究对数的性质师:负数和零有没有对数?并说明理由x生:负数和零没有对数由于定义中规定

9、a0,因而不管x是什么数,都有a0,这x确实是说,不管x是什么数,N=a永远是正数因而,由等式x=logaN能够看到,负数和零没有对数师:特别好由于对数定义是建立在指数定义的根底之上,因而我们要充分利用指数的知识来研究对数师:板书性质1:负数和零没有对数 师:1的对数是多少?生:由于a=1a0,a1,因而按照对数定义可得1的对数是零 师:板书1的对数是零 师;底数的对数等于多少?1生:由于a=a,因而按照对数的定义可得底数的对数等于1 师:板书底数的对数等于1师:给一分钟时间,请牢记这三条性质 练习:课本第74页练习1、2、3、4题。作业:课本第86页习题2.2A组题第1、2题。logNlog

10、82log2第二课时师:在初中,我们学习了指数的运算法那么,请大家回忆一下aaa生:mnmn(m,nZ);(am)namn (m,nZ);(ab)nanbn (nZ),师:下面我们利用指数的运算法那么,证明对数的运算法那么板书 1正因数积的对数等于同一底数各个因数的对数的和,即logaMN=logaM+logaN请两个同学读法那么1,并给时间让学生讨论证明师:我们要证明这个运算法那么,用眼睛一瞪无从下手,这时我们该想到,关于对数我们只学了定义和性质,显然性质不能证明此式,因而只有用定义证明而对数是由指数加以定义的,显然要利用指数的运算法那么加以证明,因而,我们首先要把对数等式转化为指数等式pq

11、师:板书设logaM=p,logaN=q,由对数的定义能够写成M=a,N=a因而pqp+qMN=aa=a, 因而 logaMN=p+q=logaM+logaN 即 logaMN=logaM+logaN 师:这个法那么的适用条件是什么?生:每个对数都有意义,即M0,N0;a0且a1 师:观察法那么1的构造特点并加以经历生:等号左端是乘积的对数,右端是对数的和,从左往右看是一个降级运算 师:特别好例如,板书log23264=? 生:log23264=log232+log264=5+6=11师:通过此例,同学应体会到此法那么的重要作用降级运算它使计算简化 师:板书log62+log63=?生:log

12、62+log63=log623=1师:正确由此例我们又得到什么启示? 生:这是法那么从右往左的使用是晋级运算 师:对关于运算法那么公式,我们不仅要会从左往右使用,还要会从右往左使用真正领会法那么的作用!师:板书2两个正数的商的对数等于被除数的对数减去除数的对数师:仿照研究法那么1的四个步骤,本人学习 给学生三分钟讨论时间pq生:板书设logaM=p,logaN=q按照对数的定义能够写成M=a,N=a因而师:特别好他是利用指数的运算法那么和对数的定义加以证明的大家再想一想,在证明法那么2时,我们不仅有对数的定义和性质,还有法那么1这个结论那么,我们是否还有其它证明方法?生:板书师:特别美丽他是运

13、用转化归结的思想,借助于刚刚证明的法那么1去证明法那么2他的证法要比书上的更简单这说明,转化归结的思想,在化难为易、化复杂为简单上的重要作用事实上,这种思想不但在学习新概念、新公式时常常用到,而且在解题中的应用更加广泛师:法那么2的适用条件是什么? 生:M0,N0;a0且a1师:观察法那么2的构造特点并加以经历生:等号左端是商的对数,右端是对数的差,从左往右是一个降级运算,从右往左是一个晋级运算师:板书lg20-lg2=?师:可见法那么2的作用仍然是加快计算速度,也简化了计算的方法 师:板书 例1 计算:学生上黑板解,由学生判对错,并说明理由: 1log93+log927=log9327=lo

14、g981=2;3log24+4=log24+log24=4;生:第2题错!在同底的情况下才能运用对数运算法那么板书生:第3题错!法那么1的内容是:生:第4题错!法那么2的内容是:师:通过前面同学出现的错误,我们在运用对数运算法那么时要特别留意什么?篇二:高中数学对数与对数运算对数与对数运算教案XX大学数学与统计学院XXX一、教学目的1、知识目的:理解对数的概念,理解对数与指数的关系;掌握对数式与指数式的互相转换;理解对数的运算性质,构成知识技能;2、才能目的:通过实例让学生认识对数的模型,让学生有才能去处理今后有关于对数的征询题,同时让学生学会观察和动手,通过做练习,使学生感遭到理论与实践的统一,锻炼学生的动手才能;3、分析目的:通过让学生分组进展探究活动,在探究中分析各种思维的技巧,掌握对数运算的重要性质。二、教学理念为了调动学生学习的积极性,使学生化被动为主动,从学习中体会欢乐。本节课我引导学生从实例出发,引发学生的考虑,从中认识对数的模型,体会对数的必要性。在教学重难点上,我步步设征询、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 教案课件

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2