收藏 分享(赏)

不同水油黏度比下乳化对稠油复合驱的影响_李宗阳.pdf

上传人:哎呦****中 文档编号:306583 上传时间:2023-03-20 格式:PDF 页数:7 大小:1.82MB
下载 相关 举报
不同水油黏度比下乳化对稠油复合驱的影响_李宗阳.pdf_第1页
第1页 / 共7页
不同水油黏度比下乳化对稠油复合驱的影响_李宗阳.pdf_第2页
第2页 / 共7页
不同水油黏度比下乳化对稠油复合驱的影响_李宗阳.pdf_第3页
第3页 / 共7页
不同水油黏度比下乳化对稠油复合驱的影响_李宗阳.pdf_第4页
第4页 / 共7页
不同水油黏度比下乳化对稠油复合驱的影响_李宗阳.pdf_第5页
第5页 / 共7页
不同水油黏度比下乳化对稠油复合驱的影响_李宗阳.pdf_第6页
第6页 / 共7页
亲,该文档总共7页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、第30卷第1期油气地质与采收率Vol.30,No.12023年1月Petroleum Geology and Recovery EfficiencyJan.2023收稿日期:2022-04-02。作者简介:李宗阳(1986),男,山东临沂人,高级工程师,博士,从事化学驱提高采收率技术攻关和推广工作。E-mail:。通信作者:丁名臣(1984),男,山东日照人,副教授,博士。E-mail:D。基金项目:国家重点研发计划“新型环保表面成膜型缓蚀剂的缓蚀机理及应用”(2021YFE0107000),山东省自然科学基金项目“基于可控释放型自生泡沫的低渗油藏增能-调驱一体化提高采收率方法”(ZR2019

2、11080151)。文章编号:1009-9603(2023)01-0146-07DOI:10.13673/37-1359/te.202204035不同水油黏度比下乳化对稠油复合驱的影响李宗阳1,杨勇2,王业飞3,张世明1,张真瑜3,丁名臣3(1.中国石化胜利油田分公司 勘探开发研究院,山东 东营 257015;2.中国石化胜利油田分公司,山东 东营 257001;3.中国石油大学(华东)石油工程学院,山东 青岛 266580)摘要:化学复合驱是稠油提高采收率的关键技术之一,当前复合体系研发中越发强调乳化降黏机理,形成了高效乳化体系,但是强乳化产生的驱油增量尚不清楚,难以判断乳化对驱油的实际贡献

3、。利用性能显著不同的1#(超低界面张力复合体系)、2#(乳化复合体系)、3#(兼顾超低界面张力和乳化的双效复合体系)体系,开展了系列的界面张力、乳化性能和不同水油黏度比下的驱油对比研究。结果表明,2#乳化复合体系和3#双效复合体系较1#超低界面张力复合体系更能稳定稠油乳状液。乳化对稠油复合驱的贡献因水油黏度比的不同而存在差异:水油黏度比小于0.200时,3#双效复合体系较1#超低界面张力复合体系采收率增幅高3.6%6.7%,乳化能够增强体系驱油能力;当水油黏度比大于等于0.200时,3种复合体系驱油效果相近,乳化的影响显著减小,甚至可以忽略。泡沫复合驱较二元复合驱采收率增幅显著提高,且其可将稠

4、油驱替对复合体系乳化性能要求的水油黏度比界限从0.200减小到0.150。对于稠油复合驱,应依据水油黏度比的差异,确定对复合体系性能的要求。关键词:稠油;复合驱;乳化;提高采收率;张力;水油黏度比中图分类号:TE357.46文献标识码:AEffects of emulsification on combination flooding in heavyoil reservoirs at different water-oil viscosity ratiosLI Zongyang1,YANG Yong2,WANG Yefei3,ZHANG Shiming1,ZHANG Zhenyu3,DING

5、 Mingchen3(1.Exploration and Development Research Institute,Shengli Oilfield Company,SINOPEC,Dongying City,Shandong Province,257015,China;2.Shengli Oilfield Company,SINOPEC,Dongying City,Shandong Province,257001,China;3.School ofPetroleum Engineering,China University of Petroleum(East China),Qingdao

6、 City,Shandong Province,266580,China)Abstract:The chemical combination flooding is one of the key techniques for enhanced heavy oil recovery.More importance is attached to the emulsification and viscosity reduction mechanism during the development of such combination systems,and some efficient emuls

7、ification systems are formed.The“oil recovery increment”caused by strong emulsification,however,is still unclear,which results in difficulties in determining the actual contributions of emulsification to oil displacement.In this study,three combination systems with significantly different properties

8、 were collected,namely,the ultra-low interfacial tension system(#1),the strong emulsification system(#2),and the system with both ultra-low interfacialtension and strong emulsification(also called dual-effect system)(#3).The comparative studies of interfacial tension,emulsification performance,and o

9、il displacement at different water-oil viscosity ratios were carried out.The results revealthat the second and third systems(#2 and#3)are more capable of stabilizing heavy oil emulsions than the ultra-low interfacial tension system(#1),and the contributions of emulsification to the combination flood

10、ing in heavy oil reservoirs varieswith the water-oil viscosity ratios.When the water-oil viscosity ratio is less than 0.200,the oil recovery of the dual-effectsystem(#3)is 3.6%-6.7%higher than that of the ultra-low interfacial tension system(#1),which indicates that emulsifica第30卷第1期李宗阳等.不同水油黏度比下乳化对

11、稠油复合驱的影响 147 tion can enhance the oil displacement capacity of the system.When the ratio is equal to or greater than 0.200,however,theoil displacement effect of the three systems is similar,and the impact of emulsification is significantly reduced or can evenbe ignored.The foam combination flooding

12、could significantly raise the oil recovery increment in comparison with the binary combination flooding,and more importantly,it can reduce the water-oil viscosity ratio limits required by combinationsystem emulsification performance for heavy oil displacement from 0.200 to 0.150.It can be seen that

13、the performance ofcombination systems of combination flooding in heavy oil reservoirs should be determined according to the difference in water-oil viscosity ratios.Key words:heavy oil;combination flooding;emulsification;ultra-low interfacial tension;water-oil viscosity ratio稠油油藏黏度高、水油流度比高导致其水驱采收率仅为

14、5%10%1-2。传统稠油热采取得较大成功,但仍存在能源消耗大、易窜、效果逐轮/逐年变差等问题3。化学复合驱兼具增大驱替相黏度、降低油水界面张力和乳化降低油相黏度等优势,逐渐成为稠油开发的重要接替技术4-9。尤其是近年来,稠油的乳化降黏开发备受关注,在驱油体系中加入降黏剂,形成O/W型乳状液,改善其流动性10-13;发展了高效的乳化降黏体系(甚至是自乳化体系),主要包括表面活性剂类、两亲聚合物类和改性纳米颗粒等体系14-17,稠油降黏率达 90%以上,表现出显著的降黏效果。但是降黏剂加入的同时会带来潜在的产出液破乳困难、驱油剂成本显著升高等问题18-19。诸多试验阶段的乳化降黏剂价格高昂,甚至

15、达到每吨十几到几十万元,远超传统表面活性剂。在稠油复合体系设计中是否应追求强乳化,取决于乳化对稠油驱替的影响和贡献。尤其是水油黏度比变化时,复合体系中聚合物组分流度控制能力差异,稠油高效驱替对乳化降黏的要求不同,乳化对稠油驱替的贡献会发生改变;诸多学者更多地关注高效降黏体系的研发14-17,而乳化对驱油的影响或者贡献仍不清晰,有待深化研究。据此,分别收集了性能显著不同的传统超低界面张力、乳化、兼顾超低界面张力和乳化的双效 3种稠油复合体系;开展了系列的界面张力、乳化性能和驱油等研究,对比不同体系驱油采收率增幅的差异,确定在不同水油黏度比条件下乳化对稠油复合驱的影响和贡献。1实验部分1.1材料与

16、仪器实验材料包括超低界面张力型表面活性剂S1、乳化型表面活性剂S2和双效型表面活性剂S3,均为阴非复配型,其质量分数均为0.3%,来自于胜利油田;部分水解聚丙烯酰胺P(HPAM),相对分子质量为 2.5107,来自于山东宝莫生物化工股份有限公司;模拟地层水,矿化度为 6 681 mg/L,离子组成Na+K+,Mg2+Ca2+,Cl-,HCO3-和CO32-的质量浓度分别为 2 299,184,3 435,725和 38 mg/L;某区块脱气稠油黏度为731 mPas(70),密度为0.98 g/cm3。实验仪器包括TX-500C型界面张力仪(美国科诺工业有限公司);SZX7体式显微镜(日本奥林巴斯有限公司);均质填砂模型,内径为 2.5 cm,长度为30 cm。1.2实验方法界面张力按照设定浓度分别配制超低界面张力、乳化和双效复合体系(表1),在70 下利用界面张力仪,测试其与目标稠油的界面张力20。表1复合体系组成与基本性能Table1Compositions and basic properties of threecombination systems体系编号1#2#3#体系类型

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 专业资料 > 其它

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2