1、要尽可能多做些习题应当尽可能地多做些习题,以达到熟能生巧的境地。不要以为多做习题搞得熟些是浪费时间,少做几个习题,煮成夹生饭那才是浪费时间呢!算术不熟练,做代数题时处处用到算术,每一个基本运算都比旁人慢,因而做代数习题所花的时间自然比那算术熟练的人所花的时间多了。不仅如此,如果一个人运算熟,在听老师进一步讲课的时候,对于一些与以往知识有关的推导部分很快地接受了,只要专听这一节课的主要的关键性的几点就可以了。而不熟练的人却必须枝枝节节地每步必细听,每步必细想,这样虽然把自己的神经搞得十分紧张而疲乏,但结果还不能抓住要点。换言之,基本训练熟练的人,他仅仅在已有的知识上添上一点或两点新东西,而不熟练
2、的则势必处处被动,添上一大堆东西,当然也就串不起来了。符号与数学的关系阿拉伯数字的由来学好数学要常练、苦练、活练数形性质、基本运算、逻辑推理的熟练还不能仅仅依靠一时的锻炼,而必须靠经常的锻炼。“拳不离手,曲不离口”,此之谓也。一有机会就练,经常地练,练熟了,练到灵活运用的程度,练到推陈出新的程度。不仅要常练,还要苦练、活练。难题要不要做?我个人的意见,还是有计划有重点地做些好,这是一种锻炼。书上的习题再难些,数学书上的习题一定能用数学来解决,数学书上第五章的习题一般是能用第五章的加减乘除等数学符号都是经过长期发展而形成,到了十七世纪,才得到广泛的使用。加法符号,开始使用的是英文plus的字头p
3、。在德国,使用了相当于英语“and”的词“et”。随着欧洲商业的繁荣,写“et”也嫌慢,为了加快速度,把两个字母连着写,因此“et”慢慢地变成了 “”。减法也是同样,使用英文minus的字头m,而它也是为了便于速写,逐渐变成了“”。英国的奥特雷德首先使用了“”作为乘号。据说乘法符号是根据加法符号得来的。乘法运算是一种特殊的加法运算,所以将加法符号“”稍作变动,就变成了现在的成号“”。除法的符号“”是英国的瓦里斯最初使用的,后来在英国得到了推广。符号“”中间的横线把上、下两部分分开,形像地表示了“分”。阿拉伯数字,是现今国际通用数字。最初由印度人发明,后由阿拉伯人传向欧洲,之后再经欧洲人将其现代
4、化。正因阿拉伯人的传播,成为该种数字最终被国际通用的关键节点,所以人们称其为 “阿拉伯数字”。阿拉伯数字由0,1,2,3,4,5,6,7,8, 9共10个计数符号组成。采取位值法,高位在左,低位在右,从左往右书写。借助一些简单的数学符号(小数点、负号、百分号等),这个系统可以明确的表示所有的有理数。为了表示极大或极小的数字,人们在阿拉伯数字的基础上创造了科学记数法。阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“算筹”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。20世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。知识来解决的,这就是一个重要的提示,重要的范围。因此,适当的做些难题,练了思路,对将来处理实际问题是有好处的。不然套得上公式的会,套不上的就不会,这样的人在处理实际问题时,也就能力不大了。对待较难的问题,就要苦练,不达目的不休的苦练。关于活练,最好多问几个为什么。看到圆,看它能启发些什么,茶壶盖为什么不会掉到茶壶里去?而茶叶筒盖却容易掉到茶叶筒里去?看到方,方砖可以铺地,还有没有其它形式的砖头?如,在空间又如何?看到球,水珠为什么成为球形?训练同学,循序渐进,不要轻视容易,不要惧怕困难。