收藏 分享(赏)

2021年北京市高考数学试题(解析版).doc

上传人:a****2 文档编号:3172523 上传时间:2024-01-27 格式:DOC 页数:17 大小:1.64MB
下载 相关 举报
2021年北京市高考数学试题(解析版).doc_第1页
第1页 / 共17页
2021年北京市高考数学试题(解析版).doc_第2页
第2页 / 共17页
2021年北京市高考数学试题(解析版).doc_第3页
第3页 / 共17页
2021年北京市高考数学试题(解析版).doc_第4页
第4页 / 共17页
2021年北京市高考数学试题(解析版).doc_第5页
第5页 / 共17页
2021年北京市高考数学试题(解析版).doc_第6页
第6页 / 共17页
亲,该文档总共17页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2021年普通高等学校招生全国统一考试(北京卷)数学第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项1. 已知集合,则( )A. B. C. D. 【答案】B【解析】【分析】结合题意利用并集的定义计算即可.【详解】由题意可得:,即.故选:B.2. 在复平面内,复数满足,则( )A. B. C. D. 【答案】D【解析】【分析】由题意利用复数的运算法则整理计算即可求得最终结果.【详解】由题意可得:.故选:D.3. 已知是定义在上的函数,那么“函数在上单调递增”是“函数在上的最大值为”的( )A. 充分而不必要条件B. 必要而不

2、充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】【分析】利用两者之间的推出关系可判断两者之间的条件关系.【详解】若函数在上单调递增,则在上的最大值为,若在上的最大值为,比如,但在为减函数,在为增函数,故在上的最大值为推不出在上单调递增,故“函数在上单调递增”是“在上的最大值为”的充分不必要条件,故选:A.4. 某四面体的三视图如图所示,该四面体的表面积为( )A. B. 4C. D. 2【答案】A【解析】【分析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.【详解】根据三视图可得如图所示的几何体-正三棱锥,其侧面为等腰直角三角形,底面

3、等边三角形,由三视图可得该正三棱锥的侧棱长为1,故其表面积为,故选:A.5. 双曲线过点,且离心率为,则该双曲线的标准方程为( )A. B. C. D. 【答案】A【解析】【分析】分析可得,再将点代入双曲线的方程,求出的值,即可得出双曲线的标准方程.【详解】,则,则双曲线的方程为,将点的坐标代入双曲线的方程可得,解得,故,因此,双曲线的方程为.故选:A.6. 和是两个等差数列,其中为常值,则( )A. B. C. D. 【答案】B【解析】【分析】由已知条件求出的值,利用等差中项的性质可求得的值.【详解】由已知条件可得,则,因此,.故选:B.7. 函数,试判断函数的奇偶性及最大值( )A. 奇函

4、数,最大值为2B. 偶函数,最大值为2C. 奇函数,最大值为D. 偶函数,最大值为【答案】D【解析】【分析】由函数奇偶性的定义结合三角函数的性质可判断奇偶性;利用二倍角公式结合二次函数的性质可判断最大值.【详解】由题意,所以该函数为偶函数,又,所以当时,取最大值.故选:D.8. 定义:24小时内降水在平地上积水厚度()来判断降雨程度其中小雨(),中雨(),大雨(),暴雨(),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级( )A. 小雨B. 中雨C. 大雨D. 暴雨【答案】B【解析】【分析】计算出圆锥体积,除以圆面的面积即可得降雨量,即可得解.【详解】由题意,一个半径为的

5、圆面内的降雨充满一个底面半径为,高为的圆锥,所以积水厚度,属于中雨故选:B.9. 已知圆,直线,当变化时,截得圆弦长的最小值为2,则( )A. B. C. D. 【答案】C【解析】【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出【详解】由题可得圆心为,半径为2,则圆心到直线的距离,则弦长为,则当时,弦长取得最小值为,解得.故选:C.10. 数列是递增的整数数列,且,则的最大值为( )A. 9B. 10C. 11D. 12【答案】C【解析】【分析】使数列首项、递增幅度均最小,结合等差数列的通项及求和公式即可得解.【详解】若要使n尽可能的大,则,递增幅度要尽可能小,不妨设数列是首项

6、为3,公差为1的等差数列,其前n项和为,则,所以n的最大值为11.故选:C.第二部分(非选择题共110分)二、填空题5小题,每小题5分,共25分11. 展开式中常数项为_【答案】【解析】【详解】试题分析:的展开式的通项 令得常数项为.考点:二项式定理.12. 已知抛物线,焦点为,点为抛物线上的点,且,则的横坐标是_;作轴于,则_【答案】 . 5 . 【解析】【分析】根据焦半径公式可求的横坐标,求出纵坐标后可求.【详解】因为抛物线的方程为,故且.因为,解得,故,所以,故答案为:5,.13. ,则_;_【答案】 . 0 . 3【解析】【分析】根据坐标求出,再根据数量积的坐标运算直接计算即可.【详解

7、】,.故答案为:0;3.14. 若点与点关于轴对称,写出一个符合题意的_【答案】(满足即可)【解析】【分析】根据在单位圆上,可得关于轴对称,得出求解.【详解】与关于轴对称,即关于轴对称, ,则,当时,可取的一个值为.故答案为:(满足即可).15. 已知函数,给出下列四个结论:若,则有两个零点;,使得有一个零点;,使得有三个零点;,使得有三个零点以上正确结论得序号是_【答案】【解析】【分析】由可得出,考查直线与曲线的左、右支分别相切的情形,利用方程思想以及数形结合可判断各选项的正误.【详解】对于,当时,由,可得或,正确;对于,考查直线与曲线相切于点,对函数求导得,由题意可得,解得,所以,存在,使

8、得只有一个零点,正确;对于,当直线过点时,解得,所以,当时,直线与曲线有两个交点,若函数有三个零点,则直线与曲线有两个交点,直线与曲线有一个交点,所以,此不等式无解,因此,不存在,使得函数有三个零点,错误;对于,考查直线与曲线相切于点,对函数求导得,由题意可得,解得,所以,当时,函数有三个零点,正确.故答案为:.【点睛】思路点睛:已知函数的零点或方程的根的情况,求解参数的取值范围问题的本质都是研究函数的零点问题,求解此类问题的一般步骤:(1)转化,即通过构造函数,把问题转化成所构造函数的零点问题;(2)列式,即根据函数的零点存在定理或结合函数的图象列出关系式;(3)得解,即由列出的式子求出参数

9、的取值范围三、解答题共6小题,共85分,解答应写出文字说明,演算步骤或证明过程16. 已知在中,(1)求的大小;(2)在下列三个条件中选择一个作为已知,使存在且唯一确定,并求出边上中线的长度;周长为;面积为;【答案】(1);(2)答案不唯一,具体见解析【解析】【分析】(1)由正弦定理化边为角即可求解;(2)若选择:由正弦定理求解可得不存在;若选择:由正弦定理结合周长可求得外接圆半径,即可得出各边,再由余弦定理可求;若选择:由面积公式可求各边长,再由余弦定理可求.【详解】(1),则由正弦定理可得,解得;(2)若选择:由正弦定理结合(1)可得,与矛盾,故这样的不存在;若选择:由(1)可得,设的外接

10、圆半径为,则由正弦定理可得,则周长,解得,则,由余弦定理可得边上的中线的长度为:;若选择:由(1)可得,即,则,解得,则由余弦定理可得边上的中线的长度为:.17. 已知正方体,点为中点,直线交平面于点(1)证明:点为的中点;(2)若点为棱上一点,且二面角的余弦值为,求的值【答案】(1)证明见解析;(2)【解析】【分析】(1)首先将平面进行扩展,然后结合所得的平面与直线的交点即可证得题中的结论;(2)建立空间直角坐标系,利用空间直角坐标系求得相应平面的法向量,然后解方程即可求得实数的值.【详解】(1)如图所示,取的中点,连结,由于为正方体,为中点,故,从而四点共面,即平面CDE即平面,据此可得:

11、直线交平面于点,当直线与平面相交时只有唯一的交点,故点与点重合,即点为中点.(2)以点为坐标原点,方向分别为轴,轴,轴正方形,建立空间直角坐标系,不妨设正方体的棱长为2,设,则:,从而:,设平面的法向量为:,则:,令可得:,设平面的法向量为:,则:,令可得:,从而:,则:,整理可得:,故(舍去).【点睛】本题考查了立体几何中的线面关系和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.18. 为加快新冠肺炎检测效率,某检测机构采取“k合1检测法”,即将k个人的拭子样本合并检测,若为阴性,

12、则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测现有100人,已知其中2人感染病毒(1)若采用“10合1检测法”,且两名患者同一组,求总检测次数;已知10人分成一组,分10组,两名感染患者在同一组的概率为,定义随机变量X为总检测次数,求检测次数X的分布列和数学期望E(X);(2)若采用“5合1检测法”,检测次数Y的期望为E(Y),试比较E(X)和E(Y)的大小(直接写出结果)【答案】(1)次;分布列见解析;期望为;(2)见解析【解析】【分析】(1)由题设条件还原情境,即可得解;求出X的取值情况,求出各情况下的概率,进而可得分布列,再由期望的公式即可得解;(2)求出,分类即

13、可得解.【详解】(1)对每组进行检测,需要10次;再对结果为阳性的组每个人进行检测,需要10次;所以总检测次数为20次;由题意,可以取20,30,则的分布列:所以;(2)由题意,可以取25,30,设两名感染者在同一组的概率为p,则,若时,;若时,;若时,.19. 已知函数(1)若,求在处切线方程;(2)若函数在处取得极值,求的单调区间,以及最大值和最小值【答案】(1);(2)函数的增区间为、,单调递减区间为,最大值为,最小值为.【解析】【分析】(1)求出、的值,利用点斜式可得出所求切线的方程;(2)由可求得实数的值,然后利用导数分析函数的单调性与极值,由此可得出结果.【详解】(1)当时,则,此

14、时,曲线在点处的切线方程为,即;(2)因为,则,由题意可得,解得,故,列表如下:增极大值减极小值增所以,函数的增区间为、,单调递减区间为.当时,;当时,.所以,.20. 已知椭圆过点,以四个顶点围成的四边形面积为(1)求椭圆E的标准方程;(2)过点P(0,-3)的直线l斜率为k,交椭圆E于不同的两点B,C,直线AB,AC交y=-3于点M、N,直线AC交y=-3于点N,若|PM|+|PN|15,求k的取值范围【答案】(1);(2)【解析】【分析】(1)根据椭圆所过的点及四个顶点围成的四边形的面积可求,从而可求椭圆的标准方程.(2)设,求出直线的方程后可得的横坐标,从而可得,联立直线的方程和椭圆的

15、方程,结合韦达定理化简,从而可求的范围,注意判别式的要求.【详解】(1)因为椭圆过,故,因为四个顶点围成的四边形的面积为,故,即,故椭圆的标准方程为:.(2)设,因为直线的斜率存在,故,故直线,令,则,同理.直线,由可得,故,解得或.又,故,所以又故即,综上,或21. 定义数列:对实数p,满足:,;,(1)对于前4项2,-2,0,1的数列,可以是数列吗?说明理由;(2)若是数列,求值;(3)是否存在p,使得存在数列,对?若存在,求出所有这样的p;若不存在,说明理由【答案】(1)不可以是数列;理由见解析;(2);(3)存在;【解析】【分析】(1)由题意考查的值即可说明数列不是数列;(2)由题意首

16、先确定数列的前4项,然后讨论计算即可确定的值;(3)构造数列,易知数列是的,结合(2)中的结论求解不等式即可确定满足题意的实数的值.【详解】(1)由性质结合题意可知,矛盾,故前4项的数列,不可能是数列.(2)性质,由性质,因此或,或,若,由性质可知,即或,矛盾;若,由有,矛盾.因此只能是.又因为或,所以或.若,则,不满足,舍去.当,则前四项为:0,0,0,1,下面用纳法证明:当时,经验证命题成立,假设当时命题成立,当时:若,则,利用性质:,此时可得:;否则,若,取可得:,而由性质可得:,与矛盾.同理可得:,有;,有;,又因为,有即当时命题成立,证毕.综上可得:,.(3)令,由性质可知:,由于,因此数列为数列.由(2)可知:若;,因此,此时,满足题意.【点睛】本题属于数列中的“新定义问题”,“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题 > 高考真题全 > 数学真题试卷254套 > 2021年高考 > 2021北京高考数学

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2