1、3.1 建立一元一次方程模型教学目标1在具体情景中感受方程作为刻画现实世界有效模型的意义。2通过观察、归纳一元一次方程的概念。教学重难点【教学重点】体会方程模型的重要性,了解一元一次方程的概念。【教学难点】正确理解方程作为解决实际问题的数学模型的作用。课前准备无教学过程一、创设情境:展现方程是刻画现实生活的有效模型1(出示投影1)如图是一个长方体形的电视机包装盒,它的底面宽为1米,长为1.2米,且包装盒的表面积为6.8平方米,求这个电视机包装盒的高。 学生活动:学生分小组讨论 师生共同分析:设包装盒的高为x米,用代数式表示这六个长方形面积的和为(2x2.4x2.4)平方米,而我们已知这个包装盒
2、的表面积为6.8平方米,依题意得:2x2.4x2.46.82投影插图并提问:铅笔多少钱1枝? 学生活动:分析等量关系,尝试列出如问题1一样的式子。 教师活动:引导学生分析得到:4x(x4)1023引入方程概念 在等式2x2.4x2.46.8中,2,2.4,6.8叫已知数,字母x表示的数叫未知数。 我们把含有未知数的等式叫作方程,如:x58,x2y6,3x2y120中,x、y都是未知数,这些等式都是方程。 像问题1和问题2那样,把所要求的量用字母x(或y等)表示,根据问题中的数量关系列出方程,这叫作建立方程模型。二、议一议:认识一元一次方程1展示出上述列出的方程: 2x2.4x2.46.8;4x
3、(x4)1022学生活动:分组讨论,以上的方程有什么共同特点。3组织学生进行全班交流,得出以上方程的特点是:方程中不含分母或分母中不含未知数;只含有一个未知数;未知数的指数都是1。4归纳一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的整式方程叫作一元一次方程。 能使方程左右两边的值相等的未知数的值叫作方程的解,求方程的解的过程叫作解方程。5学生活动:判断下列各式是不是方程,如果是,指出哪些是一元一次方程?如果不是,说明为什么?5x3x3,2y23y10,xy5,2x1, x3,0.3x2x教师组织学生交流,共同评析。三、做一做:检验一个数是否为方程的解例:检验下列各数是不是方程x3
4、2x8的解?1x52x2师生共同分析:解:1把x5代入方程左右两边左边532,右边2582左边右边所以x5是方程x32x8的解。2把x2代入方程左右两边。左边235,右边2(2)812左边右边所以x2不是方程x32x8的解。四、随堂练习课本练习1、2题五、小结师生共同小结本节课学习的内容:1实际生活中很多问题可以利用方程来解决。2方程,一元一次方程,方程的解等概念。六、作业课本习题A组第1、2、3题补充题:一、判断下列方程是不是一元一次方程13x22x4; 2x5; 32x1; 42x3y0; 5x3; 64x5y二、检验下列各小题括号里数是不是它们前面的方程的解 1x104x (x1,x2); 2x(x1)12 (x3,x4)。三、根据题意,列出方程 1在课外活动中,张老师发现同学们的年龄大多是13岁,就问:我今年45岁,经过几年你们的年龄正好是我年龄的三分之一。 2某班分成两个小组活动,第一组26人,第二组22人,若要将第一组人数调为第二组人数的一半,应从第一组调多少人到第二组?2