收藏 分享(赏)

高中数学人教A版选修2-2 2.1.2 类比推理【练习】.doc

上传人:a****2 文档编号:3228084 上传时间:2024-02-06 格式:DOC 页数:4 大小:77.50KB
下载 相关 举报
高中数学人教A版选修2-2 2.1.2 类比推理【练习】.doc_第1页
第1页 / 共4页
高中数学人教A版选修2-2 2.1.2 类比推理【练习】.doc_第2页
第2页 / 共4页
高中数学人教A版选修2-2 2.1.2 类比推理【练习】.doc_第3页
第3页 / 共4页
高中数学人教A版选修2-2 2.1.2 类比推理【练习】.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、选修2-2 2.1.2 类比推理一、选择题1下列说法正确的是()A由合情推理得出的结论一定是正确的B合情推理必须有前提有结论C合情推理不能猜想D合情推理得出的结论无法判定正误【答案】B【解析】由合情推理得出的结论不一定正确,A不正确;B正确;合情推理的结论本身就是一个猜想,C不正确;合情推理结论可以通过证明来判定正误,D也不正确,故应选B.2下面几种推理是合情推理的是()由圆的性质类比出球的有关性质由直角三角形、等腰三角形、等边三角形的内角和是180,归纳出所有三角形的内角和都是180教室内有一把椅子坏了,则该教室内的所有椅子都坏了三角形内角和是180,四边形内角和是360,五边形内角和是54

2、0,由此得出凸多边形的内角和是(n2)180ABCD【答案】C【解析】是类比推理;都是归纳推理,都是合情推理3三角形的面积为S(abc)r,a、b、c为三角形的边长,r为三角形内切圆的半径,利用类比推理,可以得到四面体的体积为()AV(S1S2S3S4)r,(S1、S2、S3、S4分别为四面体四个面的面积,r为四面体内切球的半径)BVShCVabcDV(abbcac)h(h为四面体的高)【答案】A【解析】边长对应表面积,内切圆半径应对应内切球半径故应选A.4类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列哪些性质,你认为比较恰当的是()各棱长相等,同一顶点上的任两条棱的

3、夹角都相等各个面都是全等的正三角形,相邻两个面所成的二面角都相等各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等ABCD【答案】C【解析】正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故都对5类比三角形中的性质:(1)两边之和大于第三边(2)中位线长等于底边的一半(3)三内角平分线交于一点可得四面体的对应性质:(1)任意三个面的面积之和大于第四个面的面积(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于第四个面面积的(3)四面体的六个二面角的平分面交于一点其中类比推理方法正确的有()A(1) B(1

4、)(2)(3) C(1)(2) D都不对【答案】B【解析】以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确6由代数式的乘法法则类比推导向量的数量积的运算法则:“mnnm”类比得到“abba”;“(mn)tmtnt”类比得到“(ab)cacbc”;“(mn)tm(nt)”类比得到“(ab)ca(bc)”;“t0,mtxtmx”类比得到“p0,apxpax”;“|mn|m|n|”类比得到“|ab|a|b|”;“”类比得到“”以上式子中,类比得到的结论正确的个数是()A1B2C3D4【答案】B【解析】由向量的有关运算法则知正确,都不

5、正确,故应选B.二、填空题11设f(x),利用课本中推导等差数列前n项和公式的方法,可求得f(5)f(4)f(0)f(5)f(6)的值为_【答案】3【解析】本题是“方法类比”因等比数列前n项和公式的推导方法是倒序相加,亦即首尾相加,那么经类比不难想到f(5)f(4)f(0)f(5)f(6),而当x1x21时,有f(x1)f(x2),故所求答案为63.12六个面都是平行四边形的四棱柱称为平行六面体如图甲,在平行四边形ABD中,有AC2BD22(AB2AD2),那么在图乙中所示的平行六面体ABCDA1B1C1D1中,ACBDCADB等于_【答案】4AA4AB24AD2【解析】ACBDCADB(AC

6、CA)(BDDB)2(AAAC2)2(BBBD2)4AA2(AC2BD2)4AA4AB24AD2.13在以原点为圆心,半径为r的圆上有一点P(x0,y0),则过此点的圆的切线方程为x0xy0yr2,而在椭圆1(ab0)中,当离心率e趋近于0时,短半轴b就趋近于长半轴a,此时椭圆就趋近于圆类比圆的面积公式,在椭圆中,S椭_.类比过圆上一点P(x0,y0)的圆的切线方程,则过椭圆1(ab0)上一点P(x1,y1)的椭圆的切线方程为_【答案】ab;xy1【解析】当椭圆的离心率e趋近于0时,椭圆趋近于圆,此时a,b都趋近于圆的半径r,故由圆的面积Sr2rr,猜想椭圆面积S椭ab,其严格证明可用定积分处

7、理而由切线方程x0xy0yr2变形得xy1,则过椭圆上一点P(x1,y1)的椭圆的切线方程为xy1,其严格证明可用导数求切线处理14在等差数列an中,若a100,则有等式a1a2ana1a2a19n(n19,nN*)成立,类比上述性质,相应地:在等比数列bn中,若b91,则有等式_成立【答案】b1b2bnb1b2b17n(n17,nN*)【解析】从分析所提供的性质入手:由a100,可得aka20k0,因而当n19n时的情形由此可知:等差数列an之所以有等式成立的性质,关键在于在等差数列中有性质:an1a19n2a100,类似地,在等比数列bn中,也有性质:bn1b17nb1,因而得到答案:b1b2bnb1b2b17n(n17,nN*)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2