1、教育资源分享店铺 网址: 微信号:kingcsa333绝密启用前 2015年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题:本大题共5小题,每小题5分,共25分.1、设全集若集合,则 2、若复数满足,其中为虚数
2、单位,则 3、若线性方程组的增广矩阵为、解为,则 4、若正三棱柱的所有棱长均为,且其体积为,则 5、抛物线()上的动点到焦点的距离的最小值为,则 6、若圆锥的侧面积与过轴的截面面积之比为,则其母线与轴的夹角的大小为 7、方程的解为 8、在报名的名男教师和名女教师中,选取人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示)9、已知点和的横坐标相同,的纵坐标是的纵坐标的倍,和的轨迹分别为双曲线和若的渐近线方程为,则的渐近线方程为 10、设为,的反函数,则的最大值为 11、在的展开式中,项的系数为 (结果用数值表示) 12、赌博有陷阱某种赌博每局的规则是:赌客先在标记有,
3、的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的倍作为其奖金(单位:元)若随机变量和分别表示赌客在一局赌博中的赌金和奖金,则 (元)13、已知函数若存在,满足,且(,),则的最小值为 14、在锐角三角形中,为边上的点,与的面积分别为和过作于,于,则 二、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.15、设,则“、中至少有一个数是虚数”是“是虚数”的( )A充分非必要条件 B必要非充分条件C充要条件 D既非充分又非必要条件16、已知点的坐标为,将绕坐标原点逆时针旋转
4、至,则点的纵坐标为( )A B C D17、记方程:,方程:,方程:,其中,是正实数当,成等比数列时,下列选项中,能推出方程无实根的是( )A方程有实根,且有实根 B方程有实根,且无实根 C方程无实根,且有实根 D方程无实根,且无实根 18、设是直线()与圆在第一象限的交点,则极限( )A B C D三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。19、(本题满分12分)如图,在长方体中,、分别是、的中点证明、四点共面,并求直线与平面所成的角的大小.20、(本题满分14分)本题共有2小题,第小题满分6分,第小题满分8分如图,三地有直道相通,千米,千米,千米.现甲、
5、乙两警员同时从地出发匀速前往地,经过小时,他们之间的距离为(单位:千米).甲的路线是,速度为千米/小时,乙的路线是,速度为千米/小时.乙到达地后原地等待.设时乙到达地.(1)求与的值;(2)已知警员的对讲机的有效通话距离是千米.当时,求的表达式,并判断在上得最大值是否超过?说明理由.21、(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分.已知椭圆,过原点的两条直线和分别于椭圆交于、和、,记得到的平行四边形的面积为.(1)设,用、的坐标表示点到直线的距离,并证明;(2)设与的斜率之积为,求面积的值.22、(本题满分16分)本题共有3个小题.第1小题满分4分,第2小题满分6分,第3小
6、题满分6分. 已知数列与满足,.(1)若,且,求数列的通项公式;(2)设的第项是最大项,即(),求证:数列的第项是最大项;(3)设,(),求的取值范围,使得有最大值与最小值,且.23、(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.对于定义域为的函数,若存在正常数,使得是以为周期的函数,则称为余弦周期函数,且称为其余弦周期.已知是以为余弦周期的余弦周期函数,其值域为.设单调递增,.(1)验证是以为周期的余弦周期函数;(2)设证明对任意,存在,使得;(3)证明:“为方程在上得解”的充要条件是“为方程在上有解”,并证明对任意都有.2015年普通高等学校招生
7、全国统一考试(上海卷)数学(理科)一、填空题:本大题共5小题,每小题5分,共25分.1、设全集若集合,则 【答案】【解析】因为,所以【考点定位】集合运算2、若复数满足,其中为虚数单位,则 【答案】【解析】设,则【考点定位】复数相等,共轭复数3、若线性方程组的增广矩阵为、解为,则 【答案】【解析】由题意得:【考点定位】线性方程组的增广矩阵4、若正三棱柱的所有棱长均为,且其体积为,则 【答案】【解析】【考点定位】正三棱柱的体积5、抛物线()上的动点到焦点的距离的最小值为,则 【答案】【考点定位】抛物线定义6、若圆锥的侧面积与过轴的截面面积之比为,则其母线与轴的夹角的大小为 【答案】【解析】由题意得
8、:母线与轴的夹角为【考点定位】圆锥轴截面7、方程的解为 【答案】 【考点定位】解指对数不等式8、在报名的名男教师和名女教师中,选取人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示)【答案】【解析】由题意得,去掉选5名女教师情况即可:【考点定位】排列组合9、已知点和的横坐标相同,的纵坐标是的纵坐标的倍,和的轨迹分别为双曲线和若的渐近线方程为,则的渐近线方程为 【答案】【考点定位】双曲线渐近线10、设为,的反函数,则的最大值为 【答案】【解析】由题意得:在上单调递增,值域为,所以在上单调递增,因此在上单调递增,其最大值为【考点定位】反函数性质11、在的展开式中,项的系
9、数为 (结果用数值表示)【答案】【考点定位】二项展开式12、赌博有陷阱某种赌博每局的规则是:赌客先在标记有,的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的倍作为其奖金(单位:元)若随机变量和分别表示赌客在一局赌博中的赌金和奖金,则 (元)【答案】13、已知函数若存在,满足,且(,),则的最小值为 【答案】【考点定位】三角函数性质14、在锐角三角形中,为边上的点,与的面积分别为和过作于,于,则 【答案】【考点定位】向量数量积,解三角形二、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项
10、是符合题目要求的.15、设,则“、中至少有一个数是虚数”是“是虚数”的( )A充分非必要条件 B必要非充分条件C充要条件 D既非充分又非必要条件【答案】B【考点定位】复数概念,充要关系 16、已知点的坐标为,将绕坐标原点逆时针旋转至,则点的纵坐标为( )A B C D【答案】D【解析】,即点的纵坐标为【考点定位】复数几何意义17、记方程:,方程:,方程:,其中,是正实数当,成等比数列时,下列选项中,能推出方程无实根的是( )A方程有实根,且有实根 B方程有实根,且无实根C方程无实根,且有实根 D方程无实根,且无实根【答案】B【解析】当方程有实根,且无实根时,从而即方程:无实根,选B.而A,D由
11、于不等式方向不一致,不可推;C推出有实根【考点定位】不等式性质18、设是直线()与圆在第一象限的交点,则极限( )A B C D【答案】A【考点定位】极限三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。19、(本题满分12分)如图,在长方体中,、分别是、的中点证明、四点共面,并求直线与平面所成的角的大小.【答案】【考点定位】空间向量求线面角20、(本题满分14分)本题共有2小题,第小题满分6分,第小题满分8分如图,三地有直道相通,千米,千米,千米.现甲、乙两警员同时从地出发匀速前往地,经过小时,他们之间的距离为(单位:千米).甲的路线是,速度为千米/小时,乙的路线
12、是,速度为千米/小时.乙到达地后原地等待.设时乙到达地.(1)求与的值;(2)已知警员的对讲机的有效通话距离是千米.当时,求的表达式,并判断在上得最大值是否超过?说明理由.来 【答案】(1),(2),不超过.因为在上的最大值是,在上的最大值是,所以在上的最大值是,不超过.【考点定位】余弦定理21、(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分.已知椭圆,过原点的两条直线和分别于椭圆交于、和、,记得到的平行四边形的面积为.(1)设,用、的坐标表示点到直线的距离,并证明;(2)设与的斜率之积为,求面积的值.【答案】(1)详见解析(2)22、(本题满分16分)本题共有3个小题.第1小
13、题满分4分,第2小题满分6分,第3小题满分6分. 已知数列与满足,.(1)若,且,求数列的通项公式;(2)设的第项是最大项,即(),求证:数列的第项是最大项;(3)设,(),求的取值范围,使得有最大值与最小值,且.【答案】(1)(2)详见解析(3)来 当时,符合上式.所以.因为,所以,.当时,由指数函数的单调性知,不存在最大、最小值;当时,的最大值为,最小值为,而;当时,由指数函数的单调性知,的最大值,最小值,由及,得.综上,的取值范围是.【考点定位】等差数列,数列单调性23、(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.对于定义域为的函数,若存在正常数,使得是以为周期的函数,则称为余弦周期函数,且称为其余弦周期.已知是以为余弦周期的余弦周期函数,其值域为.设单调递增,.(1)验证是以为周期的余弦周期函数;(2)设证明对任意,存在,使得;(3)证明:“为方程在上得解”的充要条件是“为方程在上有解”,并证明对任意都有.【答案】(1)详见解析(2)详见解析(3)详见解析(3)若为在上的解,则,且,即为方程在上的解 【考点定位】新定义问题