1、七年级春季班 初一数学春季班(教师版)教师日期学生课程编号05课型复习课课题邻补角、对顶角及垂线教学目标1理解和掌握邻补角和对顶角的概念;2理解和掌握邻补角和对顶角的性质,并灵活运用于几何运算;3理解和掌握垂线(段)及点到直线的距离概念,并灵活运用教学重点1邻补角及对顶角的性质及运用;2垂线的性质及运用教学安排版块时长1邻补角的意义和性质20min2对顶角的意义和性质15min3垂线(段)的意义和性质30min4随堂检测25min5课后作业30min邻补角、对顶角及垂线知识结构模块一:邻补角的意义和性质知识精讲1、 平面上两条不重合直线的位置关系相交:两条直线有一个交点;平行:两条直线没有交点
2、2、邻补角的意义两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角叫做互为邻补角3、邻补角的性质互为邻补角的两个角一定互补,但互补的两个角不一定互为邻补角例题解析【例1】 如图,直线AB、CD相交于点O,AOD =35,则AOC=_;ABCDOBOD=_;BOC=_【难度】【答案】,【解析】和互为邻补角, 和,和互为邻补角【总结】考察邻补角的定义【例2】 经过两点可以画_条直线,两条直线相交,有且只有_个交点【难度】【答案】1,1【解析】考察两点确定一条直线以及相交的意义 【例3】 如图,BOF的邻补角是()AAOEBAOF和BOECAOBDBOE和DOFABCEFDO【难度
3、】【答案】B【解析】考察邻补角的意义EFABCDO【例4】 把下图中邻补角分别写出来【难度】【答案】和,和,和 ,和,和【解析】考察邻补角的意义【例5】 已知1=2,1与3互余,2与4互补,则3_4【难度】【答案】【解析】(互余的意义),(互补的意义),又(已知), (等式性质) (等式性质), 【总结】考察互余,互补的概念以及利用简单的运算比较大小【例6】 已知,AB与CD相交于O点,若AOD比AOC大40,则BOD=_,若AOD=2AOC,则BOD=_,若AOD=AOC,则BOD=_【难度】【答案】【解析】设,则,(邻补角的意义), 解得:,所以, 所以(邻补角的意义); 设,则解得:,
4、所以,所以(邻补角的意义); 设,则,解得:,所以【总结】考察平角的意义以及邻补角的定义ABCDEO【例7】 如图所示,O是直线AB上任意一点,以O为端点任意做一条射线OC,且OD平分BOC,OE平分AOC,求DOE的度数【难度】【答案】【解析】因为平分,平分(已知)所以,(角平分线的意义)因为(平角的意义)所以(等量代换)所以(等式性质)即【总结】主要考察平角的意义,角平分线的意义的综合运用BADCO【例8】 如图,射线OA、OB、OC、OD有公共端点O,且AOB=90,COD=90,AOD=BOC,求BOC的度数【难度】【答案】【解析】因为AOD=BOC, 所以设,则因为(周角的意义)又A
5、OB=90,COD=90(已知)所以(等式性质) 解得:, 即【总结】考察周角的概念,以及利用设未知数的思路求解角的度数【例9】 (1)已知1和2互为邻补角,且1比2的3倍大20,求1和2的度 数;(2)一个角的补角比这个角的余角的2倍大15,求这个角的度数【难度】【答案】(1),;(2)【解析】(1)因为1和2互为邻补角, 所以(邻补角的意义) 因为 (已知), 所以(等量代换), 所以,(等式性质); (2)设这个角为,则根据题意可得:,解得:, 即这个角的度数为【总结】考察补角,余角以及邻补角的概念及其综合运用【例10】 如图,直线AB、CD相交于点O,且AOC=54,1比2小10,AC
6、BDO求1、2的度数【难度】【答案】,【解析】因为直线AB、CD相交于点O(已知), 所以(对顶角相等) 设,则, 故, 解得:, 所以, 即,【总结】考察对顶角的意义及角的和差的综合运用【例11】 如图,直线AB、CD、EF相交于点O,且AOF=3BOF,AOC=90,(1) 求COE的度数;(2) 说明OE、OF分别是AOC、BOD的平分线的理由ACBDOEF【难度】【答案】(1);(2)略【解析】(1)因为(邻补角的意义) 又(已知) 所以(等量代换) 所以(等式性质) 因为直线AB、EF相交于点O(已知) 所以(对顶角相等) 因为(已知) 所以(等式性质) (2)因为,(已知) 所以(
7、等式性质) 所以(等量代换) 因为(对顶角相等) 所以(等量代换) 同理 所以OE、OF分别是AOC、BOD的平分线(角平分线的意义)【总结】考察邻补角的意义,角平分线的意义以及相应的计算,综合性较强,注意认真分析题目中的条件模块二:对顶角的意义和性质知识精讲1、对顶角的意义两个角有公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角叫做互为对顶角2、对顶角的性质对顶角相等例题解析【例12】 下列说法中,正确的是()A 有公共顶点的两个角是对顶角B 对顶角一定相等C 有一条公共边的两个角是邻补角D 互补的两个角一定是邻补角【难度】【答案】B【解析】错误,有公共顶点,并
8、且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角才叫做互为对顶角;正确;错误,有一条公共边,且它们的另一边互为反向延长线;错误,互补的两个角不一定是邻补角【总结】考察邻补角和对顶角的概念ABCDO【例13】 把下图中对顶角分别写出来【难度】【答案】和,和【解析】考察对顶角的定义【例14】 (1)如果以点O为端点画四条射线OA、OB、OC、OD,且OA、OC, OB、OD互为反向延长线,那么AOB和COD互为_;(2)如果以点O为端点画三条射线OA、OB、OC,且射线OA、OC互为反向延长线,那么AOB和COB互为_【难度】【答案】对顶角,邻补角【解析】考察对顶角和邻补角的定义
9、ABCDEFGHJIK【例15】 如图,共有对顶角() A4对B5对C6对D8对【难度】【答案】D【解析】和,和,和,和,和, 和,和,和均互为对顶角【总结】本题主要考察对顶角的概念【例16】 下列说法:对顶角相等;相等的角是对顶角;如果两个角不相等,那么这两个角一定不是对顶角;如果两个角不是对顶角,那么这两个角不相等其中正确的说法是() ABCD【难度】【答案】B【解析】(1)正确;(2)错误,相等的角不一定是对顶角;(3)正确,对顶角一定是相等的, (4)错误,不是对顶角也可以相等【总结】主要考察学生对对顶角的理解,相等的角不一定是对顶角,但对顶角一定相等,不是对顶角的两个角也可以相等【例
10、17】 a、b、c两两相交,1=60,2:4=3:2,求3和5的度数abc【难度】【答案】,【解析】因为(对顶角相等),(已知) 所以(等量代换) 因为(已知), 所以(等式性质) 因为(对顶角相等), 所以(等量代换) 因为(邻补角的意义), 所以(等式性质)【总结】考察邻补角和对顶角的意义及综合运用ABCDO【例18】 如图,直线AB、CD交于点O,则(1)若2=31,则1=_;(2)若2:3=4:1,则2=_;(3)若21=100,则3=_【难度】【答案】,【解析】(1)因为(邻补角的意义), 又(已知) 所以(等量代换), 所以(等式性质); (2)因为(邻补角的意义),2:3=4:1
11、(已知) 所以设, 则(等量代换), 解得:,(等式性质), 即;(3) 因为(邻补角的意义),21=100(已知) 所以,(等式性质), 所以(对顶角相等)【总结】考察学生对于邻补角知识点的掌握,同时还考察学生对于二元一次方程组的计算,设未知数列式计算等【例19】 a、b、c交于点O,两条直线相交,2=1,3:1=8:1,求4的度数abcO【难度】【答案】【解析】设,则, 故, 解得:(等式性质), 所以 所以(对顶角相等)【总结】考察学生对邻补角和对顶角的意义及综合运用ABCDEFO【例20】 已知直线AB、CD相交于点O,OE平分BOD,OF平分COE,2:1=4:1,求AOF的度数【难
12、度】【答案】【解析】因为OE平分BOD(已知) 所以(角平分线的意义) 设,则, 因为(平角的意义), 所以(等式性质) 即, 所以(邻补角的意义) 因为OF平分COE(已知), 所以(角平分线的意义)所以(等式性质)因为(角的和差)所以(等式性质)因为(邻补角的意义) 所以(等式性质)【总结】考察学生对邻补角,角平分线的意义的概念的理解以及简单的运算,综合性较强,注意认真分析条件【例21】 (1)两条直线相交,有几对对顶角?有几对邻补角?(2)三条直线相交,有几对对顶角?有几对邻补角?(3)n条直线两两相交,最多会形成多少对对顶角?几对邻补角?(不含平角)【难度】【答案】(1)2对,4对;(
13、2)最多有6对对顶角,12对邻补角,最少有4对对顶角,8 对邻补角;(3)对对顶角,对邻补角【解析】考察学生对对顶角和邻补角的内容的理解和掌握模块三:垂线(段)的意义和性质知识精讲1、垂线的意义如果两条直线的夹角为直角,那么就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足2、垂直的符号记作:“”,读作:“垂直于”,如:ABCD,读作“AB垂直于CD”注:垂直是特殊的相交3、 垂直公理:在平面内,过直线上或直线外的一点作已知直线的垂线可以作一条,并且只能作一条简记为:过一点,有且仅有一条直线与已知直线垂直4、 中垂线过线段中点且垂直于这条线段的直线,叫做这条线段的垂直
14、平分线,简称中垂线5、 垂线段的性质联结直线外一点与直线上各点的所有线段中,垂线段最短6、 点到直线的距离直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离如果一个点在直线上,那么就说这个点到直线的距离为零例题解析【例22】 “同一平面内,过一点有且只有一条直线与已知直线垂直”中这一点的位置() A在直线的上方B在直线的下方C在直线上D可以任意位置【难度】【答案】D【解析】考察对垂直公理的理解及运用【例23】 如图,OAOB于O,直线CD经过点O,AOD=35,则BOC=_ABCDO【难度】【答案】【解析】(已知)(垂线的意义)(已知)(互余)(邻补角的意义)【总结】考察垂线的意义以及
15、互余的意义及综合运用【例24】 下列说法中正确的是()A有且只有一条直线垂直于已知直线B从直线外一点到这条直线的垂线段,叫做这点到这条直线距离C互相垂直的两条线段一定相交D直线c外一点A与直线c上各点连接而成的所有线段中最短线段的长是3cm,则点A到直线c的距离是3cm【难度】【答案】D【解析】A错误,过一点有且只有一条直线垂直于已知直线; B错误,垂线段的长度; C错误,互相垂直的两条直线一定相交; D正确【总结】考察垂直公理,点到直线的距离以及垂线段的性质等内容【例25】 列说法正确的个数是() 直线上或直线外一点,都能且只能画这条直线的一条垂线;过直线上一点和直线外一点B的直线,使它与直
16、线垂直;从直线外一点作这条直线的垂线段,叫做这个点到这条直线的距离;过直线外一点画这条直线的垂线段,垂线段的长度叫做这点到这条直线的距离.A1B2C3D4【难度】【答案】C【解析】(1)错误,在同一平面内;(2)错误;(3)错误,点到直线的距离是指垂线段的长度,故选C【总结】考察学生对基本概念的理解ABCDEFH【例26】 如图,点A到直线BC的距离是线段_的长;线段CH的长表示点C到直线_的距离;点A到点C的距离是线段_长【难度】【答案】AE,AD,AC【解析】考察点到直线的距离的概念的理解及运用ABCD【例27】 如图,ACBC,C为垂足,CDAB,D为垂足,BC=8,CD=4.8,BD=
17、6.4,AD=3.6,AC= 6,那么点C到AB的距离是_,点A到BC的距离是_,点B到CD 的距离是_,A、B两点的距离是_【难度】【答案】4.8,6,6.4,10【解析】点C到AB的距离是线段CD的长,即4.8;点A到BC的距离是线段AC的长,即6;点B到CD 的距离是线段BD的长,即6.4;A、B两点的距离是线段AB的长,即10【总结】考察点到直线的距离的内容【例28】 作图题: 过点P分别画直线a、b的垂线,垂足分别为M、N【难度】【答案】【解析】考察垂线的画法【例29】 按下列要求画图并填空:(1)过点B画出直线AC的垂线,交直线AC于点D,那么点B到直线AC的距离是线段_的长(2)
18、用直尺和圆规作出ABC的边AB的垂直平分线EF,交边AB、AC于点M、N,联结CM那么线段CM是ABC的_(保留作图痕迹) BAABC【难度】ABC【答案】(1);(2)边上的中线【解析】考察垂线的画法【例30】 一辆汽车在直线形的公路上由A向B行驶,M、N分别是位于公路AB两侧的两个学校;(1)汽车行驶时,会对公路两旁的学校都造成一定的影响,当汽车行驶到何处时,分别对两个学校影响最大?在图中标出来(2)当汽车由A向B行驶时,在哪一段上对两个学校影响越来越大?越来越小?对M学校影响逐渐减小而对N学校影响逐渐增大?【难度】【答案】见解析【解析】(1)如右图所示,到C点时对M影响最大,到D点时对N
19、影响最大;(2)由A向C时,对两学校影响逐渐增大;由D向B时,对两学校影响逐渐减小;由C向D时,对M影响减小,对N影响增大【总结】本题主要考察对点到直线的距离的概念的理解及在实际问题中的运用随堂检测【习题1】 到一条直线的距离等于2的点有()A1个B0个C无数个D无法确定【难度】【答案】C【解析】到直线的距离等于2的点有无数个,这些点组成两条直线【总结】考察点到直线的距离【习题2】 下列说法错误的是()A两点之间,线段最短B和已知直线垂直的直线有且只有一条C过直线外一点有且只有一条直线平行于已知直线D在同一平面内过一点有且只有一条直线垂直于已知直线【难度】【答案】B【解析】B错误,有无数条【总
20、结】考察学生对垂线的意义和性质的理解ABC【习题3】 如图,过ABC三个顶点A、B、C,分别作BC、AC、AB的垂线,并用“”符号表示出来【难度】【答案】【解析】考察垂线段的作法【习题4】 下列说法正确的个数有()(1) 直线外一点与直线上各点的所有连接线中垂线段最短;(2) 画一条直线的垂线可以画无数条;(3) 在同一平面内,经过一个已知点能画出一条直线和已知直线垂直;(4) 从直线外一点到这条直线的垂线段叫做点到直线的距离A1个B2个C3个D4个【难度】【答案】C【解析】(4)错误,直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故选C【总结】本题主要考查点到直线的距离及垂线的相关概
21、念等【习题5】 若=54,的两边与两边互相垂直,则=_【难度】【答案】或【解析】和是相等或者互补的关系【总结】考察垂线的意义以及两解问题,注意分类讨论【习题6】 平面上三条直线两两相交,最多有m个交点,最少有n个交点,则=_【难度】【答案】4【解析】最多有3个交点,最少有1个交点,【总结】考察学生的作图分析能力ABCDEFO【习题7】 如图,直线AB、CD、EF相交于点O,OA平分COE,当COE=70,求BOD的度数,当DOE=110时,求BOD的度数【难度】【答案】,【解析】因为平分,COE=70(已知)所以(角平分线的意义)所以(对顶角相等)同理,【总结】考察学生对邻补角和对顶角知识点的
22、掌握和简单应用【习题8】 已知ABl,BCl,B为垂足,问:A、B、C三点共线吗?为什么?ACBl【难度】【答案】共线【解析】过直线外一点有且只有一条直线与已知直线垂直【总结】考察垂线段意义和性质,注意对三点共线的理解【习题9】 如图已知O是直线AC上一点,OB是一条射线,OD平分AOB,OE在BOCDAEBCO内,BOE=EOC,DOE=70,求EOC的度数【难度】【答案】【解析】因为OD平分AOB(已知)所以(角平分线的意义)设,则, 解得: ,所以EOC =【总结】这一题考察学生对角平分线的内容理解,对补角的知识点的掌握以及二元一次方程组的列式和计算等ABO【习题10】 如图,已知AOB
23、,画射线OCOA,射线ODOB,你能画出几种符合要求的图形?并猜想COD与AOB的数量关系,并说明理由【难度】【答案】相等或互补【解析】如图【总结】主要考察多解问题,是对学生发散思维的要求课后作业【作业1】 下列语句中正确的是()A有一条公共边且和为180的两个角是邻补角B互为邻补角的两个角不等C两边互为反向延长线的两个角是对顶角D交于一点的三条直线形成3对对顶角【难度】【答案】C【解析】A错误,另一边互为反向延长线;B错误,不一定,有可能相等;D错误,6对【总结】考察邻补角,对顶角的内容【作业2】 直线AB上有一点P和此直线外的一点Q的距离为3cm,则Q到直线AB的距离()A等于3cmB大于
24、或等于3cm C小于或等于3cmD都不对【难度】【答案】C【解析】考察点到直线的距离的知识点及其运用ABCDEO【作业3】 直线AB与直线CD相交于点O,EOAB于O,则图中1和2的关系是_【难度】【答案】互余【解析】考察对顶角的性质以及互余的意义及运用【作业4】 从钝角AOB的顶点O在AOB内引射线OC使OCOA,若AOC:COB=3:1,求AOB的度数【难度】【答案】【解析】因为(已知),所以(垂线的意义)因为AOC:COB=3:1(已知)所以(等式性质)所以(等式性质)【总结】考查学生画图能力,并且学会分析题目【作业5】 如图:AOBC于点O,OA平分DOE,COE=64,求AOD的度数
25、ABCDEO【难度】【答案】【解析】因为(已知)所以(垂直的意义)因为(已知)所以(等式性质)因为OA平分DOE(已知)所以(角平分线的意义)【总结】考察学生对简单几何题的分析,注意互余,角平分线等概念的理解及运用【作业6】 作图:已知线段AB上一点Q及线段外一点P(1) 过点Q作线段AB的垂线;(2) 过点P作线段AB的垂线【难度】【答案】如右图【解析】注意标注垂直符号,以及字母的标注【总结】画图一定要写结论【作业7】 (1)用三角尺画一个30的AOB,在边OA上任取一点P,过P作PQOB,垂足为Q,量一量OP的长,你发现点P到OB的距离与OP长的关系吗?(2)若所画的AOB为60,重复上面
26、的测量,你会发现什么?【难度】【答案】(1); (2),【解析】画图,测量,猜想结论【总结】考察学生的作图能力,并且量出相应的长度,从而得出结论ABCDEFGO【作业8】 如图所示,直线AB、CD、EF相交于点O,OG平分BOF,且CDEF,AOE=70,求DOG的度数【难度】【答案】【解析】因为(对顶角相等) 又(已知) 所以(等量代换) 因为OG平分BOF(已知) 所以(角平分线的意义) 因为(已知) 所以(垂线的意义) 所以(互余的意义)【总结】考察角平分线,垂线的意义,对顶角的内容等等BACDO【作业9】 如图所示,O为直线AB上一点,AOC=BOC,OC是AOD的平分线(1) 求DO
27、C的度数;(2) 判断OD与AB的位置关系,并说明理由【难度】【答案】(1);(2)垂直【解析】(1)因为(邻补角的意义) 又AOC=BOC(已知),所以(等量代换), 所以(等式性质), 所以(等式性质) 因为OC是AOD的平分线(已知), 所以(角平分线的意义) (2)垂直 因为(已知), 所以(等式性质) 所以(垂直的意义)【总结】本题主要考查邻补角的意义及角平分线的意义的理解及运用【作业10】 如图,直线AB、CD、EF相交于点O,ABEF,OG平分FOC,OH平分DOG,(1)若AOC:COG=4:7,求DOF的度数;ABCDOEHGF(2)若AOC:DOH=8:29,求COH的度数
28、【难度】【答案】(1);(2)【解析】(1)因为OG平分FOC(已知)所以(角平分线的意义)因为AOC:COG=4:7(已知)所以设,因为ABEF(已知), 所以(垂直的意义)即, 解得:,所以,(等式性质)因为(邻补角的意义)所以(等式性质)(2)因为OG平分FOC(已知)所以(角平分线的意义)因为AOC:DOH=8:29(已知)所以设,因为ABEF(已知), 所以(垂直的意义), 即因为(平角的意义),即联立、,解得:,所以,(等式性质)因为(角的和差)所以(等式性质)【总结】本题综合性较强,主要考查角平分线意义与邻补角意义的综合运用,解题时注意对题目中的条件认真分析ABCDEFGO【作业11】 如图,直线AB、CD、EF交于点O,是它的余角的2倍,且有,求的度数【难度】【答案】【解析】因为是它的余角的2倍所以设, 则, 解得: 因为(对顶角相等), 所以(等量代换) 设,则由,得, 因为(对顶角相等), 所以, 即 解得:, 所以(等式性质) 因为(已知), 所以(垂直的意义) 所以(等式性质)【总结】主要考察学生对基本知识点的掌握,以及对题目的分析,包括垂线的意义,对顶角的意义,设未知数解方程等等23 / 23