1、第26章 二次函数,26.2 二次函数的图象与性质第1课时 二次函数y=ax2的图象与性质,学习目标,1.正确理解抛物线的有关概念.(重点)2.会用描点法画出二次函数y=ax的图象,概括出图象的特点.(难点)3.掌握形如y=ax的二次函数图象的性质,并会应用.(难点),导入新课,情境引入,讲授新课,例1 画出二次函数y=x2的图象.,9,4,1,0,1,9,4,典例精析,1.列表:在y=x2 中自变量x可以是任意实数,列表表示几组对应值:,2.描点:根据表中x,y的数值在坐标平面中描点(x,y),3.连线:如图,再用平滑曲线顺次连接各点,就得到y=x2 的图象,-3,3,o,3,6,9,当取更
2、多个点时,函数y=x2的图象如下:,x,y,二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线.,这条抛物线关于y轴对称,y轴就是它的对称轴.,对称轴与抛物线的交点叫做抛物线的顶点.,练一练:画出函数y=-x2的图象.,根据你以往学习函数图象性质的经验,说说二次函数y=x2的图象有哪些性质,并与同伴交流.,x,o,y=x2,议一议,1.yx2是一条抛物线;2.图象开口向上;3.图象关于y轴对称;4.顶点(0,0);5.图象有最低点,y,说说二次函数y=-x2的图象有哪些性质,与同伴交流.,o,x,y,y=-x2,1.y-x2是一条抛物线;2.图象开口向下;3.图象关于y轴对称
3、;4.顶点(0,0);5.图象有最高点,1.顶点都在原点;,3.当a0时,开口向上;当a0时,开口向下,二次函数y=ax2 的图象性质:,知识要点,2.图像关于y轴对称;,观察下列图象,抛物线y=ax2与y=-ax2(a0)的关系是什么?,二次项系数互为相反数,开口相反,大小相同,它们关于x轴对称.,x,y,O,y=ax2,y=-ax2,交流讨论,二次函数y=ax2的性质,问题1:观察图形,y随x的变化如何变化?,对于抛物线 y=ax 2(a0)当x0时,y随x取值的增大而增大;当x0时,y随x取值的增大而减小.,知识要点,问题2:观察图形,y随x的变化如何变化?,对于抛物线 y=ax 2(a0)当x0时,y随x取值的增大而减小;当x0时,y随x取值的增大而增大.,知识要点,解:分别填表,再画出它们的图象,如图,8,4.5,2,0.5,0,8,4.5,2,0.5,8,4.5,2,0.5,0,8,4.5,2,0.5,例2 在同一直角坐标系中,画出函数 的图象,