1、第27章 圆,27.1 圆的认识第4课时 圆周角,学习目标,1.理解圆周角的概念,会叙述并证明圆周角定理.2.理解圆周角与圆心角的关系并能运用圆周角定理解决简单的几何问题.(重点、难点)3.理解掌握圆周角定理的推论及其证明过程和运用.(难点),问题1 什么叫圆心角?指出图中的圆心角?,顶点在圆心的角叫圆心角,BOC.,导入新课,问题2 如图,BAC的顶点和边有哪些特点?,A,BAC的顶点在O上,角的两边分别交O于B、C两点.,复习引入,思考:图中过球门A、C两点画圆,球员射中球门的难易程度与他所处的位置B、D、E有关(张开的角度大小)、仅从数学的角度考虑,球员应选择从哪一点的位置射门更有利?,
2、顶点在圆上,并且两边都与圆相交的角叫做圆周角.,(两个条件必须同时具备,缺一不可),讲授新课,C,O,A,B,C,O,B,C,O,B,A,A,C,O,A,B,C,O,B,C,O,B,A,A,判一判:下列各图中的BAC是否为圆周角并简述理由.,(2),(1),(3),(5),(6),顶点不在圆上,顶点不在圆上,边AC没有和圆相交,想一想,如图,线段AB是O的直径,点C是 O上的任意一点(除点A、B外),那么,ABC就是直径AB所对的圆周角,想一想,ACB会是怎样的角?,解:OA=OB=OC,AOC、BOC都是等腰三角形.,OAC=OCA,OBC=OCB.,又 OAC+OBC+ACB=180.,A
3、CB=OCA+OCB=1802=90.,圆周角和直径的关系:半圆或直径所对的圆周角都相等,都等于90.,知识要点,典例精析,例1 如图,AB是O的直径,A=80.求ABC的大小.,解:AB是O的直径,ACB=90(直径所对的圆周角等于90.),ABC=180-A-ACB=180-90-80=10.,如图,连接BO,CO,得圆心角BOC.试猜想BAC与BOC存在怎样的数量关系.,测量与猜测,圆心O 在BAC的 内部,圆心O在BAC的一边上,圆心O在BAC的外部,推导与论证,圆心O在BAC的一边上(特殊情形),OA=OC,A=C,BOC=A+C,圆心O在BAC的内部,圆心O在BAC的外部,问题1
4、如图,OB,OC都是O的半径,点A,D 是上任意两点,连接AB,AC,BD,CD.BAC与BDC相等吗?请说明理由.,D,互动探究,BAC=BDC,相等,问题2 如图,若 A与B相等吗?,相等,想一想:(1)反过来,若A=B,那么 成立吗?,(2)若CD是直径,你能求出A的度数吗?,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧也相等.,要点归纳,推论1:90的圆周角所对的 弦是直径.,试一试:1.如图,点A、B、C、D在O上,点A与点D在点B、C所在直线的同侧,BAC=35.,(1)BOC=,理由是;(2)BDC=,理由是.,70,35,同弧所对的圆周角相等,一条弧所对的圆周角等于它所对的圆心角的一半,(1)完成下列填空:1=.2=.3=.5=.,2.如图,点A、B、C、D在同一个圆上,AC、BD为四边形ABCD的对角线.,4,8,6,7,例2 如图,分别求出图中x的大小.,60,x,30,20,x,解:(1)同弧所对圆周角相等,x=60.,A,D,B,E,C,(2)连接BF,,F,同弧所对圆周角相等,,ABF=D=20,FBC=E=30.,x=ABF+FBC=50.,例3:如图,O的直径AC为10cm,弦AD为6cm.(1)求DC的长;,